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Abstract
Objectives Many studies utilize time series methods to identify causal effects without
accounting for an underlying time trend. We show that accounting for trends changes
the conclusions in the study of Chapman et al. (JAMA, 316(3), 291–299, 2016), who
evaluated the impact of the Australian firearm law in 1996. We also introduce a new
empirical method that tests whether their empirical strategy can actually identify a
causal effect that is also useful for panel analyses.
Methods We use national data from the Australian Bureau of Statistics, assembled in
annual counts of: total firearm deaths, firearm suicides, and firearm homicides. These
data are used in an independent re-analysis of the impact of the 1996 Australian firearm
law that accounts for underlying stochastic trends. We then estimate a series of
artificially created interruptions using interrupted times series analysis in a time frame
before 1996, to test for changes in the slope of mortality across several years prior to the
actual regulatory changes. This tests whether the empirical model produces effects in
years other than the year of the intervention, thereby testing if the results can simply be
replicated at random using other interruption years.
Results Controlling for stochastic trends produces less statistical evidence of the impact
of the firearm law on firearm mortality than previously reported by Chapman et al.
(JAMA, 316(3), 291–299, 2016). Introducing artificial interruptions in 1990 through
1995 produces statistically significant decreases in all firearm-related mortality
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measures well above the expected type 1 error. Overall, 19 out of the 36 artificial
interruption models we tested were found to be statistically significant, suggesting that
the empirical model can be implemented in multiple non-intervention years with results
similar to the true 1996 interruption year.
Conclusions Current evidence showing decreases in firearm mortality after the 1996
Australian national firearm law relies on an empirical model that may have limited
ability to identify the true effects of the law.

Keywords Australia . Firearm regulation . Interrupted time series . Methods

Introduction

Many changes in law or policy are experienced by the entire population of a country or
region. An important question for policymakers and scientists is the identification of the
causal impact and magnitude of such events. Interrupted time series (ITS) methods are
commonly used to identify the impact of an event experienced by an entire population.
This method has a long history in criminology and the social sciences because it is
straightforward to operationalize while also potentially capturing causal effects in the
presence of no formal control population (Cook and Campbell 1979; Enders 2014;
Greene 2003; McCleary et al. 2017). For example, D’Alessio and Stolzenberg (1995)
estimated the impact of sentencing guidelines in Minnesota on jail sanctions, Pridemore
et al. (2007, 2008) estimated the impact of unanticipated catastrophic events, such as
the collapse of the Soviet Union and terror attacks in the USA on violence, and
Messner et al. (2001) estimated the impact of economic deprivation on homicide
arrests. Similarly, scientists have utilized ITS analyses to estimate the impact of firearm
regulations in Australia, and the impact of macroeconomic shocks, such as the reces-
sion and austerity interruptions in Greece, on mortality (Branas et al. 2015; Chapman
et al. 2006, 2016; Humphreys et al. 2017; Klieve et al. 2009; Laliotis et al. 2016).

In its simplest case, the ITS approach identifies potential causal effects by comparing
the outcome variable’s time trend (level) before the intervention to the time trend (level)
in the post-intervention period. The difference in the pre and post time trend levels
defines the causal impact of the intervention. In this approach, the null hypotheses
states that the post period can be projected from the pre period, and that any change in
the post period is, therefore, attributable to the causal effect. In other words, had the
intervention not taken place, the trend would have continued uninterruptedly. Several
variations of time series models have been developed to accommodate different data
generating processes and intervention types (Bernal et al. 2017; Dugan 2010; Shadish
et al. 2002). For example, ITS methods account for seasonality with harmonic terms,
and potential non-independence of observations (correlation) in the time series with
autoregressive integrated moving average (ARIMA) models.

However, many ITS studies do not account for potential trends and seasonality that
are unrelated to any intervention or event, thus violating the ITS assumption that the
pre-intervention time trend can be projected in the post-intervention period (Chapman
et al. 2006, 2016; Gagné et al. 2010; Spittal et al. 2012). For example, time series can
experience a general upward (or downward) trend in certain time periods irrespective of
any specific event. An empirical model ignoring such trends may lead to incorrect
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inferences. In many cases, such a trend is a process that sometimes only depends on its
previous level of observation. In this case, observations are not independent across
time—a requirement for correctly identifying any causal effects of an intervention.

Violation of the independence of observations across time will lead to a time series
process that is correlated across time (i.e., the mean of the time series is not constant over
time, also referred to as a non-stationary process) and generate estimates that attribute
the correlation of observations across time to the causal effect. Even in the case of a
stationary time series, the estimated model needs to be correctly specified, which
pertains to whether we expect changes in the dependent variable to occur gradually,
that is, a change in slope over time, an immediate change in the dependent variable, or a
jump in the dependent variable with a potential change in slope over time. Similarly, one
has to define a model that has a temporal ordering related to any actual policy change.
For instance, a law passed in 2010 should, therefore, be captured with an empirical
model that identifies the effect of the policy beginning in 2010 and not earlier. There are
several methods to test for stationarity of the time series process. However, there is no
commonly utilized method to test whether an empirical model is correctly specified,
especially in panel data analyses with a difference-in-differences empirical model.

We contribute in two ways to the existing literature. First, we highlight the need to
test for whether a time series is stationary, defined as having a constant mean over time
in the dependent variable. This is something that has not been addressed in many prior
studies, and we show how estimates differ when one adjusts the data to a stationarity
process. Second, we propose a study design that can help identify whether an empirical
specification in the time series model correctly captures the causal effect of interest.
This empirical specification has its roots in a thought experiment that a correctly
specified model intending to capture the causal effect of an intervention should not
provide statistically significant estimates (beyond the typically expected level of type 1
error) in a (stationary time series) period without an intervention. In other words, the
specification tests the underlying ITS assumption that the pre-intervention trend can be
projected in the post-intervention, which should be the case in a period of a missing
intervention. Our method tests the validity of an empirical model by performing
artificial law implementations in a sample that excludes observations from the post-
intervention time. These regressions test whether the ITS assumption of a continuous
projection of the pre-intervention trend hold in a period when no actual intervention
happened. We would expect to find no statistically significant results in independent
variables of interest in time periods with no intervention.

To this end, we take Chapman et al. (2016) as a case study to test whether their empirical
specification passes typical time series tests for stationarity, and whether their empirical
model is correctly specified, that is, captures the causal impact of the firearm law on cause-
specific mortality. Chapman et al. (2016) look at the causal effect of the 1996 Australian
firearm law on firearm-related mortality. The 1996 law was a response to a gun-involved
massacre in Tasmania, after which the Australian government implemented stricter national
firearm regulations. These regulations were implemented between June 1996 and 1998 and
included a ban on certain types of long guns, mandatory licensing for firearm owners, and
gun registration.Moreover, a comprehensive gun buyback programwas implemented in all
states in January 1997 to allow current gun owners to sell their newly prohibited guns.

Several studies have evaluated the impact of the 1996 Australian gun regulations on
firearm-related outcomes relying on ITS analysis (Chapman et al. 2006, 2016; Klieve
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et al. 2009; Lee and Suardi 2010). However, different regressions and ITS specifica-
tions have led to inconclusive results. On the one hand, there is evidence that the
regulatory changes reduced firearm-related mortality and prevented mass shootings in
the decade after the introduction of the gun laws (Chapman et al. 2006, 2016). On the
other hand, studies also found limited effects of the gun regulations on firearm-related
outcomes (Klieve et al. 2009; Lee and Suardi 2010).

To extrapolate policy relevant conclusions from the Australian firearm law and any
other policy, the use of the ITS approach needs to satisfy the underlying assumptions of
a stationary time series and a correctly specified model that can capture the actual
impact of the event. Current studies may not necessarily employ an estimation strategy
that can appropriately isolate the causal effect of the gun regulations themselves. They
may simply capture a decreasing trend, or an acceleration of a decreasing trend in the
firearm-related mortality rate that would have occurred even without the set of nation-
ally implemented gun regulations (see Fig. 1a). Moreover, the empirical model may be
mis-specified even if one has a stationary time series.

Our results provide two salient findings. First, Chapman et al.’s model does not pass
our proposed empirical checks, given that it does not account for non-stationarity of the
time series. Artificial law implementations prior to 1996 still produce statistically
significant results for decreases in firearm mortality. As such, it appears that the
decrease in Australian firearm mortality following the 1996 passage of new firearm
regulations was part of an existing downward trend, and was not necessarily caused by
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Fig. 1 Trends in firearm mortality and pre and post artificial law implementations. Each dot represents an
observation, the solid vertical line indicates the artificial implementation year, the solid downward sloping line
represents a trend in total firearm mortality rate before the corresponding artificial implementation year, and
the dotted downward sloping line represents a trend in total firearm mortality rate after the corresponding
artificial implementation year
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the 1996 gun regulations. Thus, one cannot take their results as reliable evidence on the
magnitude of the impact of the Australian firearm law. Once we account for non-
stationarity using an ARIMA model, the coefficients on total firearm mortality, firearm
suicides, and firearm homicides remain negative, but only total firearm and firearm
suicide mortality remain statistically significant. These findings suggest some benefits
of the law in terms of firearm-related mortality, though one should remain cautious
given the low level of statistical significance. Additionally, we do not find any
statistically significant estimates in the ARIMA model for all regressions that apply
an artificial law implementation, suggesting that the ARIMA specification provides a
correctly specified model to plausibly estimate the causal effects of the 1996 firearm
regulations on firearm mortality.

Data and methods

Background on time series and stationarity of the time series

A large existing literature discusses techniques to identify causal effects in a time series
(Campbell and Stanley 1966; Hansen 2001; McCleary et al. 2017; Shadish et al. 2002).
Specifically, a time series model analyzes the impact of an intervention on a dependent
variable that is repeatedly collected over time. The underlying assumption of the ITS
approach is that the pre-intervention trendwould have continued into the post-intervention
period had the intervention not taken place. Thus, the causal impact of an intervention is
captured by the difference in trends from the pre- to post-intervention periods.

Given that time series are disposed to having trends that are unrelated to interven-
tions, these have to be properly described, so that one does not interpret existing
random trends as the causal impact of an intervention. Two forms, deterministic and
stochastic trends, can affect the level of a series over time. These need to be accounted
for in a time series because the ITS approach compares the mean of the outcome
variable before and after an intervention. For this to be a reasonable strategy, the time
series before and after the intervention must possess a mean that is constant, that is, free
of the influence of the trend. A series with a constant mean is stationary in its level,
while a series that lacks a constant mean is non-stationary.

A common approach to test for non-stationarity is the use of the augmented
Dickey–Fuller test and the Phillips–Perron test. While a deterministic trend can be
accounted for with a linear continuous time variable, this does not address the
stochastic trends—such as a random walk. A random walk drifts up and down in a
non-consistent direction for an extended period and a standard method of removing a
random walk is to convert a time series to first differences. One such empirical
specification is the ARIMA model that allows for differencing the time series and
also allows the direct specification of the number of (lags) past periods and residual
terms that affect the time series.

Data and model description

We obtained annual data on firearm-related deaths in Australia from the Australian
Bureau of Statistics (ABS) from 1979 to 2013. These data had been used in the
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previous study (Chapman et al. 2016). We replicate Chapman et al.’s (2016) ITS
model using the same data. Their empirical model employs a negative binomial
regression estimation strategy to account for overdispersion in the dependent
variable:

ln dið Þ ¼ β01ln nið Þ þ β02 þ β12Yeari þ β22Lawi þ β32Yeari � Lawi þ εi ð1Þ

where Lawi, the variable of interest, is a dummy variable equal to 1 after the law
implementation, Yeari is a continuous variable of the calendar year and is coded as
calendar year since the year of the gun law implementation, di indicates the total
number of firearm-related deaths, firearm suicides, or firearm homicides in year i, ni
indicates the population at risk in year i, and εi represents the residual in year i. β22
represents the impact of the implementation of the firearm law in year i and
measures the difference in the firearm-related mortality mean from before and after
the law, that is, measuring the change in the form of an intercept movement. Finally,
β32 measures the impact of the law on the firearm-related mortality as time
progresses, that is, the change in trend after the implementation of the law.

Notice that this model cannot account for a trend described as a random walk. To
account for a stochastic trend, we calculate the firearm-related mortality rates directly
and test for stationarity with the augmented Dickey–Fuller test before specifying an
empirical model, which reveals that the data is non-stationary and exhibits a random
walk in the rate of firearm-related mortality. Thus, in addition to replicating Chapman
et al.’s (2016) model using a negative binomial regression, we propose a model that
takes the first difference of the data and estimates an ARIMA model of autoregressive
order 1 based on autocorrelation charts and residual values.

Replication results

Table 1 illustrates the replication results from Eq. (1) for the negative binomial and
the ARIMA models for total firearm deaths, firearm suicides, and firearm homi-
cides. The first three rows (panel 1) represent the results from the ARIMA model,
while rows four through six (panel 2) represent the results for the negative binomial
model. In terms of the coefficients on the change in the intercept, Lawi, both are
relatively similar in magnitude between panels 1 and 2. However, they are more
statistically significant in the negative binomial specification. Specifically, we
observe statistical significance at the 1% level for total deaths and suicides, and
10% for homicides in the negative binomial model. However, we only find statistical
significance at the 10% level for total deaths and suicides, and lower statistical
significance for homicides in the ARIMA model. Similarly, the coefficients captur-
ing trend change after the law, Lawi*Yeari, are all significant at the 10% level in the
negative binomial model, but are all insignificant in the ARIMA model.

These results show that accounting for trends in a time series can significantly
alter the empirical conclusions as well as the magnitude of the causal impact of an
intervention. The ARIMA model provides more marginal evidence that the firearm
law decreased the total and suicide firearm rates, while also suggesting that firearm
homicides were not affected. Additionally, the ARIMA model does not provide any
evidence of a change in trend after the intervention, contrary to the findings in the
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negative binomial model. Thus, we conclude that the law implementation did not
impact the trend in firearm-related mortality and did not necessarily change the
overall mean of firearm-related mortalities.

Robustness checks

Next, we perform robustness checks for both the negative binomial and ARIMA
models from Table 1. Here, we continue to rely on the same ABS data used by
Chapman et al. (2016). However, unlike Chapman et al., we utilize a subsample of
the data that only includes pre-1997 observations, that is, the years from 1979 to 1996,
thus, the period before the actual firearm law took effect.

Recall that the goal of the specification checks is to test whether the empirical
model captures a causal effect in periods of no intervention. Thus, we test the
assumption of the ITS model as to whether one would observe a continuous trend
in the absence of an intervention in a period of no intervention. In other words,
we test whether Chapman et al.’s empirical model is actually able to capture the
causal impact of the firearm law on cause-specific mortality in Australia—setting
aside the potential non-stationarity problem. If their estimation strategy is cor-
rectly specified, we would expect to not find statistically significant results in a
pre period of an artificial law implementation (at most, we would expect to
capture a stochastic trend). On the contrary, if we find consistent statistically
significant estimates, then the proposed model in Chapman et al. (2016) captures
trend changes in a period where no firearm law was enacted, therefore,
questioning whether the trend changes during the intervention period can be fully
attributed to the intervention.

We perform this test by implementing artificial law interruptions in the years from
1990 to 1995 in separate regressions. For example, an artificial implementation in
1990 suggests a pre artificial law period from 1979 to 1989 and a post artificial law
time period from 1990 to 1996. Again, we first emulate Chapman et al.’ ITS analysis

Table 1 The impact of actual law implementations on cause-specific mortality. Autoregressive integrated
moving average (ARIMA) and negative binomial replication results

Firearm
mortality
rate

Total Suicides Homicides Total Suicides Homicides

Panel 1:
ARIMA

Panel 2: negative
binomial

Law − 0.655*
(0.396)

− 0.547*
(0.261)

− 0.107
(0.146)

− 0.402***
(0.065)

− 0.427***
(0.058)

− 0.262*
(0.136)

Law*Year 0.0304
(0.0765)

0.033
(0.0476)

− 0.0025
(0.0295)

− 0.0196***
(0.006)

− 0.019***
(0.006)

− 0.0254*
(0.014)

Sample
size

34 34 34 35 35 35

Coefficients and standard errors in parentheses for the ARIMA model are presented in columns 1–3
and estimates for the negative binomial model are presented in columns 4–6. The coefficient of the change
in intercept is shown in the row labeled Law and the coefficient of the change in the trend is represented in the
row labeled Law*Year. Heteroskedasticity robust standard errors clustered at the state level are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1
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using a negative binomial regression estimation strategy to account for
overdispersion:

ln dið Þ ¼ β01ln nið Þ þ β02 þ β12Yeari þ β22Lawi þ β32Yeari � Lawi þ εi ð2Þ

where all variables are the same as previously described in Eq. (1), except that the
Lawi variable is equal to 1 in an earlier time period (i.e., 1990 and onwards for the
artificial 1990 intervention, etc.).

We also estimate our preferred ARIMA model with the artificial law interruptions
for all firearm outcome measures. Overall, we conduct separate analyses for total
firearm suicide, total firearm homicide, and total firearm deaths. These artificial
interventions lead to six models for each dependent variable, leading to 18 estimates,
and 36 coefficients of interest in all negative binomial models and, also 36 coefficients
of interest in the ARIMA model.

A correctly specified model capturing the impact of the firearm law suggests that the
artificial interruptions should not find statistically significant estimates above the
statistically expected type 1 error level. If the above regressions find statistical signif-
icance in quantities larger than expected by chance, that is, 5% for a p-value of 0.05,
then we can suspect that the actual impact of the law in 1996 is unclear in the currently
specified empirical model. Statistically significant impacts on the coefficients of interest
in the pre-1997 period may imply that Chapman et al. (2016) only capture time-varying
impacts that are unrelated to the actual passage of the law, such as a trend that is present
in a non-stationary time series. On the other hand, if all of our artificial law
implementations show limited statistically significant results, then this should provide
strong support that their estimation strategy is internally valid and presents actual causal
impacts of the law.1

Results

Figure 1a presents the overall trend in total firearm mortality from 1978 to 1996. Panels
b–g illustrate the before and after trends in the total firearm mortality rate with breaks in
the time series for artificial laws from 1990 to 1995. All panels reveal that a simple
descriptive comparison of before and after trends suggests some sort of discontinuity in
firearm mortality rates, and sometimes a potential change in trend after the artificial law.
Given that there is no actual law implementation over this period, these results suggest
potential challenges to the identification strategies of other studies relying on variation in
firearm mortality after the implementation year of the law under study, that is, in 1997.

In each column of Table 2, we present regression results of the artificial law
implementations on cause-specific mortality in a different year. Panel 1 of Table 2
presents estimates and standard errors in parentheses on the impact of artificial
implementations of gun laws on total firearm mortality. Artificial law implementations

1 We also stratified the pre-treatment period into two unique periods, 1979–1986 and 1986–1996, and
estimated artificial interruptions in 1982 and 1993, respectively. We similarly find statistically significant
impacts of the law and the interaction in Chapman et al.’s (2016) model well above expected levels. Such
subsample analysis speaks to the multiple comparison problem outlined in Hansen (2001), which may be a
potential concern in the results of the five artificial interruptions in the same time series.
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in 1990, 1991, 1992, and 1993 lead to negative and significant effects on total firearm
mortality. However, in reality, there is no law implementation during these years,
suggesting, therefore, that the regression model only captures a preexisting downward
trend in firearm mortality.

Similarly, panel 2 shows statistically significant artificial law coefficients in 1990–1993
on firearm suicide mortality. Thus, the artificial laws capture a decreasing suicide mortality
trend in all regressions, rather than a causal effect. The only exceptions occur in panel 3,
where all artificial law implementations for the years 1990–1994 present insignificant
coefficients, but do show statistically significant effects in 1994 and 1995. Panel 3 estimates
are closest to passing the robustness checks with limited rejections of the null hypothesis.

Nevertheless, in total, we would expect a rejection of the null hypothesis by chance
in as much as 10% of all cases, which, when rounded up, would allow for an acceptable
rejection of four times (10%*36 = 3.6). However, we reject the null hypothesis 19 times
for the 36 coefficients across Table 1. This leads to a rejection level of over 50%, and
questions the interrupted series conclusions presented by Chapman et al. (2016) to
identify the causal effect of the 1996 firearm law.

Table 3 is constructed in a similar way as Table 2, but illustrates regression results of
the artificial law implementations on cause-specific mortality using the ARIMA model.
Panels 1, 2, and 3 present results for the impact of artificial implementations of gun
laws on total firearm mortality rate, firearm suicide rate, and firearm homicide rate,
respectively. In all columns, artificial law implementations in 1990 to 1995 lead to
statistically insignificant effects on all firearm mortality types. These results are in stark
contrast to those presented in Table 2 and suggest that the ARIMA model passes the
specification checks, thus yielding causal estimates on the impact of the firearm law.
Specifically, contrary to Table 2, these results suggest that changes in the total firearm
mortality rate, reported in panel 1 of Table 1, indeed occurred due to the new firearm
law and are not just a part of the existing downward trend.

Discussion

Concerns remain in regards to the time series estimation strategy utilized by Chap-
man et al. (2016) to evaluate the effect of the Australian national firearm law on
firearm mortality, especially when one does not test for an underlying trend in the
time series. In addition, the law was not immediately implemented after its passage
in May of 1996 as each Australian state had to ratify the law, which some states did
not do until mid 1997. Therefore, the empirical model capturing an immediate drop
in firearm-related mortality might not be the best approach to identify a potentially
gradual impact of the law. To this end, we used a new methodological approach to
test whether the empirical model is potentially mis-specified. Our results indicate
that the model passes the robustness checks when one relies on an ARIMA model,
implying that there was, indeed, an immediate drop in total firearm-related mortality.
However, Chapman et al.’s (2016) model does not pass the specification check with
artifical law implementations, highlighting the need to adjust their model by ac-
counting for a potential non-stationary time series with either an ARIMA or another
type of model. For example, one could adjust the empirical specification by directly
controlling for a stochastic trend in the form of harmonic terms (Bernal et al. 2017).
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Overall, we provide an empirical test that can help identify potential concerns in a
time series model, which does not correctly control for underlying trends in the data.
This approach can also be applied to panel and repeated cross-sectional analyses to
test the appropriateness of a proposed model. Additionally, we believe that even in
cases where an ARIMA model may not pass the proposed robustness checks, such
violation can be corrected with an adjustment of the empirical model in terms of how
it captures the causal effect, because the violations can occur due to a mis-specified
empirical model. A recent study provides a detailed explanation of the types of
regression models applicable to ITS designs, and we believe that a more careful
model selection will result in more robust estimates that pass our robustness checks
(Bernal et al. 2017).

Another potential weakness of the time series approach, not addressed in this study,
is that other unobservable factors may be correlated with the timing of the intervention
that will influence the magnitude and level of significance of the results. For example,

Table 3 The impact of artificial law implementations in 1990 to 1995 on cause-specific mortality: ARIMA
model

Panel 1 Firearm mortality rate

Artificial law
in year

1990 1991 1992 1993 1994 1995

Law 0.235
(1.291)

− 0.023
(6.657)

− 0.271
(1.048)

− 0.257
(1.230)

− 0.024
(1.232)

0.208
(1.071e + 07)

Law*Year − 0.004
(0.155)

− 0.050
(0.159)

− 0.053
(0.183)

0.009
(0.218)

0.115
(0.564)

0.292
(1.074e + 07)

Sample size 17 17 17 17 17 17

Panel 2 Firearm suicide rate

Artificial law
in year

1990 1991 1992 1993 1994 1995

Law − 0.034
(1.058)

− 0.254
(8.504)

− 0.394
(1.226)

− 0.347
(1.063)

− 0.185
(2.874)

− 0.019
(8.144e + 06)

Law*Year − 0.0417
(0.152)

− 0.0767
(0.161)

− 0.0825
(0.180)

− 0.0536
(0.268)

0.000322
(1.204)

0.0570
(5.166e + 06)

Sample size 17 17 17 17 17 17

Panel 3 Firearm homicide rate

Artificial law
in year

1990 1991 1992 1993 1994 1995

Law 0.262
(0.447)

0.219
(1.733)

0.112
(0.249)

0.080
(0.356)

0.148
(0.228)

0.228
(400,235)

Law*Year 0.035
(0.041)

0.024
(0.044)

0.026
(0.052)

0.059
(0.049)

0.113
(0.118)

0.229
(408,355)

Sample size 17 17 17 17 17 17

Table 3 presents coefficients and standard errors from the ARIMA model with artificial law implementations
in a dataset limited to 1979–1996. The coefficient of the change in intercept is shown in the row labeled Law
and the coefficient of the change in the trend is represented in the row labeled Law*Year. Heteroskedasticity
robust standard errors clustered at the state level are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1
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macroeconomic fluctuations correlated with the passage of the firearm law, such as
changes in the unemployment rate and fluctuation in the cost of guns, could have led to
lower firearm-related mortality after 1996 (Carmichael and Ward 2001; Lee and
Holoviak 2006; Tang and Lean 2007). Not controlling for these factors can lead to
potentially overstated coefficients and spurious statistical significance of the impact of
the firearm law on firearm-related mortality. A potential way to control for such factors
is to add them to the model as covariates.

Similarly, the underlying ITS assumption of a projection of the pre trend in the post
period had the intervention not taken place may, nevertheless, be too strong. The
evaluation of the Australian gun regulations could be strengthened by introducing a
comparison group, which would allow controlling for any common phenomenon that
could have affected changes in the firearm mortality. To this end, surrounding countries
with similar demographics may be used as control states, such as New Zealand, or
estimates may rely on the synthetic control method (Abadie et al. 2010).

Other promising avenues include the use of monthly state-level data, which would
allow researchers to identify the exact timing of the law implementation for each
Australian state, increase sample size, precision, and generate more accurate variation
attributable to the law implementation. One approach taken by Andreyeva and Ukert
(2017) estimates the impact of the Australian firearm law that relies on state variation in
firearm-related mortality and assumes that the impact of the law is proportional to the
states’ firearm-related mortality rate prior to the law implementation. Such an approach
allows controlling for common trends unrelated to the intervention.

Conclusion

This paper contributes by highlighting the need to conduct time series stationarity tests
before moving to data analyses. It also provides a new set of robustness checks to assess
the validity of any empirical model. First, we replicate an interrupted time series (ITS)
regression model from Chapman et al. (2016) using a negative binomial specification to
account for overdispersion. Second, we test for non-stationarity using the augmented
Dickey–Fuller test and the Phillips–Perron test, which reveal that the data is non-stationary,
that is, exhibits a stochastic random walk. Thus, we employ the autoregressive integrated
moving average (ARIMA) model to account for the trends and their relation to past
observations. The results are similar in magnitude to the negative binomial model, but are
less significant (10% level relative to 1% in the negative binomial model).

Third, we introduce an empirical strategy that tests whether the model from Chap-
man et al. (2016) is appropriately specified by testing for statistically significant
estimates in a time period that excludes the intervention and post-intervention period.
The model estimates artificial law implementations in five prior years, 1990 through
1995, yielding different artificial post-intervention lengths. Overall, we find that all
three measures of firearm mortality (total mortality, suicides, and homicides) fail to pass
the robustness checks in the negative binomial specification proposed by Chapman
et al. (2016), but pass the specification checks in our ARIMA model.

We conclude that policymakers can rely only on select aspects of previous
studies that show statistically significant impacts on cause-specific mortality and
that future studies should better account for potential time series non-stationarity
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and perform some of the robustness checks we incorporate here. As a conservative
rule, we also propose that the use of our artificial interventions test should not result
in statistically significant coefficients in an amount larger than 5% of the total
artificial law coefficients of interest. Beyond stationarity concerns in time series
analyses, our robustness checks can yield useful insight as to whether an appropri-
ate conclusion has been reached, and can, thus, strengthen findings and the subse-
quent policy implications.
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