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A B S T R A C T   

Does lead pollution increase crime? We perform the first meta-analysis of the effect of lead on crime, pooling 542 
estimates from 24 studies. The effect of lead is overstated in the literature due to publication bias. Our main 
estimates of the mean effect sizes are a partial correlation of 0.16, and an elasticity of 0.09. Our estimates suggest 
the abatement of lead pollution may be responsible for 7–28% of the fall in homicide in the US. Given the 
historically higher urban lead levels, reduced lead pollution accounted for 6–20% of the convergence in US urban 
and rural crime rates. Lead increases crime, but does not explain the majority of the fall in crime observed in 
some countries in the 20th century. Additional explanations are needed.   

1. Introduction 

Homicide rates spiked and then fell in a consistent pattern across 
many western countries in the 20th century (Fig. 1). In the US alone the 
homicide rate has halved since the 1980s, when it was as high as the 
road fatality rate is today. In other countries the falls are not so great in 
magnitude, but still amount to many lives saved. If the causes of this fall 
were known, many more deaths and trauma could be prevented. 

Is lead pollution responsible? Lead is a toxic metal linked to harmful 
health and behavioural outcomes (see section 2). Studies have pointed 
to falling lead levels in the environment as a cause of the falls in ho-
micide, and as a factor in reducing crime rates in general. Some have 
claimed that lead emissions account for as much as 90% of the fall in 
violent crime (Nevin, 2000, 2007). The reduction in lead pollution over 
time is largely due to falling emissions from leaded gasoline (Fig. 2), but 
also due to less lead pollution from water pipes, paint, food, and soil. 

Crucially, this reduction in exposure to lead pollution over time has 
been spatially uneven. Pollution tends to be more concentrated within 
urban areas (Carrozzi and Roth, 2020; Borck and Schrauth, 2021) and 
lead is no exception. The lead burden is likely to be higher in urban areas 
for several reasons (Levin et al., 2021, O’Flaherty and Sethi, 2015). 

Urban road traffic is higher, and urban residents often live closer to 
congested roads, a risk factor before the phase out of leaded gasoline in 
most countries. Urban dwellers tend to live in closer proximity to lead 
working sites. Urban areas also have less turnover in soil, which there-
fore accumulates a larger concentration of lead. 

Fig. 3 shows that blood lead levels were generally higher in urban 
areas than rural areas. Similarly, the left-hand chart in Fig. 4 shows that 
blood lead levels in urban areas were relatively higher for children 
under 5 years of age in the US, at least in the period before the phase out 
of leaded gasoline. In the 1970s and 80s, blood lead levels in Metro-
politan Statistical Areas (MSAs) with populations greater than 1 million 
were 15% higher than levels in other parts of the country. The chart also 
illustrates the swift convergence in blood lead levels across rural and 
urban areas in the 1990s. We see a similar pattern in the US crime trends 
in the right-hand chart of Fig. 4. The urban crime rate, as measured by 
the National Crime and Victimisation Survey (NCVS) was 70% higher 
than the rural rate in the early 1990s. There then followed a convergence 
in crime rates in the 21st century, although the urban rate remains 
somewhat higher. 

These trends indicate lead could explain a large part of the observed 
variation in crime, both over time and between urban and rural areas. 
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However, the rise and fall pattern in Fig. 1 is by no means uniform. 
Furthermore, Buonanno et al. (2011) show that while total crime has 
behaved similarly to homicide in the US, it has not in Europe (Fig. 5). 
Similarly, outside the US, population density is associated with lower 
rather than higher crime rates. Ahlfeldt and Pietrostefani (2019), syn-
thetising the literature on the economic effects of density, estimate that a 
log-point increase in density is associated with a decline in crime of 
0.085 log-points. In the US they find the opposite, density is associated 

with higher crime. 
Alternative hypotheses for the observed fall in crime in some coun-

tries range from falling poverty levels (Rosenfeld and Fornango, 2007; 
Messner et al., 2001), to demographic transition, where an ageing 
population is less likely to be victimised by or engage in crime (Fox, 
2005, chap. 9; Baumer et al., 2012), increased/better policing or 
incarceration (Levitt, 1996, 1997, 2004; Marvell and Moody, 1996; and 
Corman and Mocan, 2000), to more controversial hypothesis such as 

Fig. 1. Homicide rate per 100,000 by country. 
Sources: New Zealand New Zealand Police, 2018; Buonanno et al. (2011), UK Home Office (2012); Uniform Crime Reports for the United States (2019); Falck et al. 
(2003); Statistics Canada (2019); Birkel and Dern (2012); Uniform Crime Reporting Statistics (2019). 
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legalized abortion reducing the number of children born into “adverse 
home environments” (Donohue and Levitt, 2001, 2019; Buonanno et al., 
2011). Tcherni-Buzzeo (2019) provides a recent summary of potential 
causes. 

Against this background, our paper conducts the first meta-analysis 
of the effect of lead on crime. We systematically review the literature 
and construct a dataset containing 542 estimates from a total of 24 
studies. We convert these estimates to comparable effect sizes. For this 
full sample we use partial correlation coefficients. We also convert es-
timates to elasticities, where it is possible to do so, and analyse this 
subsample of 312 estimates from 11 papers. Throughout the paper we 
account for the importance of the research design in identifying credible 
treatment effects by running separate analyses on the subsample of 
papers that address sorting or endogeneity bias of lead and crime 
explicitly. They do this by examining natural experiments where there is 
plausibly exogenous variation in lead exposure. These studies estimate 
effects using research designs such as difference-in-difference or 
instrumental variables. For simplicity, we label this subsample as the 
“addressing endogeneity” sample. This subsample consists of 7 studies 
and 220 estimates when using partial correlation coefficients. The 
sample declines to 5 studies and 211 estimates when using elasticities. 

We perform tests for publication bias and find that the effect of lead 
on crime is overstated in the literature due to this bias. Furthermore, we 
find substantial between-study heterogeneity in our sample. We there-
fore use meta-regression to estimate an average effect size accounting 
for both publication bias and the observable between-study heteroge-
neity. We take into account model uncertainty by estimating over 1 
million meta-regression specifications, using every combination of our 
covariates on both the full sample, the elasticity subsample, and several 
subsamples which exhibit less between-study heterogeneity. We plot the 
distributions of the estimated average effect size of lead on crime and 
calculate its mean. 

Our main finding is that the estimated mean effect size, evaluated at 
sample averages, is a partial correlation of 0.16 in the full sample, and an 
elasticity of 0.09 in the subsample. We also find there are differences 
between the average effect size when we use the full sample, and when 
we use only study designs that address endogeneity with quasi- 
experimental methods. The mean partial correlation coefficient for the 
“addressing endogeneity” sample is only 0.01, far smaller than the full 
sample estimate. However, when we use the smaller sample of studies 
which address endogeneity and have elasticity estimates the mean 
elasticity range is 0.05–0.17. 

Fig. 2. Lead emissions by country (1000 kg Y− 1). 
Source: Dore et al. (2006), Schwikowski et al. (2004), Kristensen (2015), US Census Bureau (2009). 
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We also distinguish between studies in which estimates are based on 
regional or area-level (e.g., US states) data from individual-level data. 
The sample of studies that use crime in an area as the focus of analysis 
have a larger mean effect size compared to those of studies which focus 
on individual behaviour. Conversely, we do not find evidence of dif-
ferences for the effect of lead on different types of crime when we use 
homicide, violent, and non-violent crime samples. 

Finally, we examine the share of the fall in crime in the late 20th 
century that lead pollution accounts for. Using the example of homicide 
in the US, our range of elasticity estimates suggests the fall in blood lead 
levels is responsible for 4–15 percentage points of the 54% fall in ho-
micide from its peak, with our main estimate being 8. This would mean 
lead explains around 7–28% of the fall in crime, leaving 93-72% unac-
counted for. When we estimate the share of US urban/rural volent crime 
convergence explained by falling lead levels, we obtain a figure of 
6–20%, with our main estimate being 11%. Our findings suggest that, 
while the effect of lead pollution on crime is positive, it is not responsible 
for the majority of the fall in crime observed in some countries in the 
20th century, or the majority of the urban/rural crime convergence. 
Therefore, other explanations require further investigation. 

2. Lead and crime 

Lead has long been part of the human environment. It was used in 
cosmetics, paint, and as coinage in ancient China (Schafer, 1956). 
Similar uses were recorded in ancient Egypt, India, and across the 
Bronze Age world (Needleman, 1991). The sweet taste of lead acetate 
meant that the Roman Empire, and later medieval Europe, used lead to 
sweeten wine, cider, and food (Lessler, 1988). The Romans had many 
other uses for lead, using it for cooking utensils, pottery, and water pipes 
(Hernberg, 2000). Indeed, Roman use of lead was prodigious, with es-
timates from Greenland artic ice cores putting the increase in atmo-
spheric lead pollution at around 4000 metric tons a year at its peak 2000 
years ago (Hong et al., 1994). This is equivalent to the UK’s lead 
pollution emissions in the mid-1980s, when leaded gasoline had not yet 
been phased out. 

Lead is a useful but toxic metal. At high levels of exposure even 
adults will experience lead poisoning. Acute lead poisoning is rare but 
can kill quickly. Chronic poisoning can still kill and is associated with 
abdominal pain, organ failure, tumours, and exhaustion, amongst other 
symptoms (WHO, 2010a). Although chronic lead poisoning in adults 
still happens, and appears to affect behaviour, it is primarily the 
long-term lead exposure of children that is thought to influence crime 
rates. 

Children are especially vulnerable to lead pollution. Children not 
only absorb more lead per unit body weight than adults, but, as the brain 
and nervous system are still developing, lead has more harmful long- 
term effects even at low levels (WHO, 2010b). Lead is chemically 

Fig. 3. Urban and rural blood lead levels (μg/dl). 
Source: Mahaffey et al. (2010), Lim et al. (1985), Strömberg Shütz and 
Skerfving (1995), and Aelion and Davis (2019). 

Fig. 4. Urban/rural blood lead levels and violent crime in the US. 
Source: Egan et al. (2021) and Bureau of Justice Statistics (2020) 

Fig. 5. Total recorded crime rate per 100,000 in USA and seven european 
countries. 
Source: Buonanno et al. (2011). The countries are: Austria, France, Germany, 
Italy, The Netherlands, Spain, and the UK. 
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similar to calcium. Calcium is important for cell growth, and synaptic 
functioning, as well as a myriad of other body processes (Sanders et al., 
2009). Therefore, lead is particularly harmful to the developing brain 
and nervous system, and thus in the womb and early infancy are the 
worst time to be exposed to lead (WHO, 2010b). 

The extent to which children have been exposed to lead pollution has 
varied substantially, both over time and spatially. As detailed in the 
introduction, for many OECD countries lead air pollution rose sharply in 
the mid-20th century before peaking in the 70s and 80s (Fig. 2). Chil-
dren in urban areas tended to have higher blood lead levels during this 
period (Figs. 3 and 4). The highest average blood lead levels for children 
today are in low and middle income countries, with one estimate putting 
the share of children with elevated blood levels (above 5 μg/dL) at one 
third (GBD, 2019). 

Yet even today, in countries that have reduced blood lead levels, 
there remain pockets with higher pollution. Cities with low pH water 
supplies tend to have higher lead levels if they also have lead pipes, 
because the water reacts more strongly upon the lead piping. Fei-
genbaum and Muller (2016), using distance to a lead refinery as an in-
strument, find these cities to have higher homicide rates in the early 
20th century. Aizer and Currie (2019) find that blood lead levels are 
higher for those living near a road, but this only applies in the period 
before the phasing out of leaded gasoline. Tanaka et al., (2022) show 
that pollution around lead-acid battery recycling plants in the US 
sharply reduced after an air-quality law was introduced in 2009, but this 
led to offshoring of lead battery recycling to Mexico. Infants living near 
the Mexican plants began to experience worse health outcomes as a 
result. Highly concentrated lead pollution, and higher blood lead levels, 
have also been found near airports (Zahran et al., 2017), lead smelters 
(Stromberg et al., 1995) and NASCAR racetracks (Hollingsworth and 
Rudik, 2021). This inequality in lead exposure means that any effect of 
lead on crime will also be spatially uneven. 

The causal chain of lead to crime starts with the biological changes it 
induces at this young age. The mechanism for these changes is laid out in 
Sanders et al. (2009), and there is an array of evidence for lead’s 
negative effects. These include impaired nerve conduction (Sindhu and 
Sutherling, 2015), damaged myelination in the nerve system (Brubaker 
et al., 2009), impeded brain development (Lanphear, 2015), and 
reduced brain matter (Cecil et al., 2008). 

The next link in the chain is from biological change to behavioural 
change in later life. Meta-analyses have found that lead exposure is 
associated with aggressiveness and other conduct problems (Marcus 
et al., 2010), lower IQ (Schwartz, 1994), and impaired cognitive func-
tioning (Vlasak et al., 2019; Seeber et al., 2002). 

The final link is from behavioural changes to an increased propensity 
to commit crime. There are several possible mechanisms. Needleman 
pioneered research on lead exposure and aggressiveness (Needleman, 
1996), suggesting it is linked to violent crime in particular. In contrast, 
Denno (1990) and Fergusson et al. (2008) argue that the link is through 
lower education outcomes, leading to worse life outcomes, which causes 
increased criminality. This mechanism is consistent with Becker’s 
(1968) economic theory of crime, where lower opportunity cost makes 
crime relatively more attractive, and suggests lead would show a 
stronger link to property crime than violent crime. A third mechanism 
was proposed by Gottfredson and Hirschi (1990), where lack of 
self-control, combined with opportunity, causes higher crime rates. Lead 
has been associated with increases in impulsivity (Winter and Sampson, 
2017), and so may cause an increase in crime through this process. If this 
mechanism were true we might expect increases in violent crime, 
non-violent crime, or both. Separating the different types of crime may 
help identify which, if any, mechanism lead acts through. However, 
whilst a range of mechanisms have been laid out linking lead in the 
environment to the propensity to commit crime, the strength of this link 
is a matter of empirical enquiry. The main objective of this paper is to 
quantify the strength of this link from the range of empirical work re-
ported to date. To do this, we use meta-analysis. 

3. Data 

Meta-analysis data collection begins by specifying the criteria which 
studies must fulfil to be accepted into the analysis. 

The criteria we chose were:  

1. The explanatory variable must be some quantitative measure of lead 
exposure.  

2. Outcome variable must measure crime in some way (i.e. not other 
types of behaviour such as aggressiveness or depression).  

3. Must have original estimates, i.e. no review papers.  
4. Must have estimates that can be combined into a meta-analysis.  
5. Be published before December 2019.  
6. Study must be available in English. 

We then undertook a systematic literature review for papers on Web 
of Science, PubMed, and Google Scholar in 2019. We also searched on 
NBER and REPEC for working papers to include as much “grey” litera-
ture as possible. The keyword combinations used were: 

“lead”, or “lead” AND “pollution”, or “lead” AND “poisoning”, or 
“lead” AND “exposure”, or “lead” AND “blood”, or “lead” AND “air”, or 
“lead” AND “paint”, or “lead” AND “water” 

Combined with: 
“crime” or “conviction” or “arrest” or “jail” or “prison” 
After searching, papers were screened to see if they fulfilled the 

criteria, as laid out in the PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) flow diagram (Fig. 6). A review and 
description of the studies included is given in appendix A. 

The vast majority of the studies identified in the literature review did 
not fulfil criteria one or two and therefore did not estimate the lead- 
crime relationship. These were then filtered out at the screening stage. 
31 papers did estimate the lead-crime relationship, but 7 of these could 
not be converted into comparable effect sizes, failing criterion four. 
Criterion four is needed because estimates must be combined in a meta- 
analysis. Estimates are made comparable by converting into a common 
metric, such as the partial correlation coefficient (PCC), or an elasticity. 
Most regression coefficients and simple correlations can be converted 
into PCCs easily. Odds ratios and standardised mean differences can also 
be converted into PCCs. However, five papers used risk ratios (Boutwell 
et al., 2016; Boutwell et al., 2017; Haynes et al., 2011; Stretesky and 
Lynch, 2001; and Wright et al., 2008). Risk ratios can be converted into 
odds ratios, which can then be converted to PCCs, but need a base rate 
risk to do so. It was not possible to infer a base rate risk from the data 
available in the papers. Therefore, these papers were excluded at the 
eligibility stage. One other paper (Masters and Coplan, 1999) contained 
charts but not enough information to make PCCs and was excluded. 
Similarly, Denno (1990) did not have enough information to use the 
estimates. No papers were excluded based on criterion six, but search 
terms were only in English. This left 24 papers in the final meta-analysis 
dataset. 

We organised accepted papers into a dataset following the guidelines 
for meta-analysis in economics in Havránek et al. (2020). Every paper 
gave multiple estimates for the effect of lead on crime. Meta-analyses 
tend to either select one estimate from each study as a “representa-
tive” estimate; or take all estimates and account for the potential clus-
tering of estimates from the same study. Both are defensible. Taking all 
estimates means more information available for the meta-analysis. 
Representative estimates, on the other hand, may be less biased. For 
example, a researcher may show a simple OLS estimate before giving 
reasons for why it will be biased. They then go on to use their preferred 
method of estimation, which attenuates this bias. In most of our analysis 
we use all estimates from the studies, but as a robustness check we also 
test our results by using one representative estimate from each study in 
appendix E. The results are similar. 

In the full sample, there are 542 estimates from the 24 studies. The 
dataset forms an unbalanced panel, with each estimate being an 
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observation and observations grouped by study. The studies included 
span across a variety of disciplines including economics, sociology, 
medicine, epidemiology, and criminology. 

Study effect sizes were then converted to the common effect size. 
Conversion is necessary because both lead and crime are measured in 
different ways in each paper, and therefore must be converted to be 
comparable. All studies in the full sample could be converted to PCCs. 
See appendix B for more details of how PCCs and the PCC standard er-
rors are calculated. 

PCCs measure the correlation between two variables holding other 
variables in the model constant. Their sizes are not intuitive. They have 
no unit and cannot be interpreted quantitively in a meta-analysis with 
varied measurements of outcome (Doucouliagos, 2011). However, as 
they are bounded from − 1 to 1, they do offer a sense of the magnitude 
and direction of an effect. In a survey of economic effect sizes Doucou-
liagos (2011) offers the following rough guidelines: 0.07–0.17 is a small 
effect size, 0.18–0.33 is a moderate one, and above 0.33 a large one. For 
most of the paper, we follow this taxonomy, but a small effect combined 
with a large absolute change in a variable can still mean it is significant 
for welfare. 

We were also able to convert some study estimates into elasticities. 
The elasticities measure the percent change in some measure of crime, 

given a percent change in some measure of lead pollution. They provide 
a better measure of the real effect rather than the measure of statistical 
strength the PCCs provide. The trade-off is that the sample is smaller and 
therefore may be less representative of the literature. There are 11 
studies and 312 estimations in what we label for simplicity the “elas-
ticity subsample”. 

Table 1 presents the mean, median and weighted average PCC for 
each study (with weights being equal to the precision, 1/standard error 
of the PCC). It also includes some information on the characteristics of 
each study. We do the same for the elasticity sample in Table 2. 

4. Methods and results 

4.1. General Approach1 

Let θj be an effect size of interest in study j. Study j uses some method 

Fig. 6. Prisma flow diagram of studies selection process.  

1 This section owes much to the excellent expositions in Meager (2019), 
Rubin (1981), and Röver (2020). Much of their explanation deals with Bayesian 
methods but works equally well for non-Bayesian methods up to the point we 
arrive at 
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to estimate θj and these we denote as θ̂ ij, for estimate i of study j. Re-
searchers are often interested in both how close θ̂ ij is to θj (internal 
validity), and in how useful θj would be in predicting results from a 
similar event or study. This can be interpreted as the degree of external 
validity of a study. 

If θj is a draw from some distribution with a likelihood function 
ψ(⋅|Θ) such that θj ∼ ψ(⋅|Θ) ∀ j, then there exists some parameter(s) Θ 
which can give information about a new draw θj+1 from that distribu-
tion. It is the parameters contained in Θ that are estimated in a meta- 
analysis. There may be several parameters of interest, but in practice 
meta-analyses usually estimate two: θ, the mean of the distribution, and 
the variance τ2. This is because meta-analyses tend to impose the 
assumption θj ∼ N(θ, τ2)∀ j in the interests of efficient estimation. Even if 
this is not the true shape of the distribution McCulloch and Neuhaus 
(2011) show, both in theory and simulation, that maximum likelihood 
estimates are robust to different distributions of θj around θ. If we also 

assume, as the individual studies themselves usually do, that ̂θ ij follows a 
normal distribution with mean θj and variance σ2

ij , then this leads to the 
normal-normal hierarchical model of Rubin (1981): 

θj ∼ N
(
θ, τ2)∀ j (1)  

θ̂ ij ∼ N
(

θj, σ2
ij

)
∀ i and ∀ j (2)  

θ̂ ij

⃒
⃒
⃒ θ, σ2

ij, τ2 ∼ N
(

θ, σ2
ij + τ2

)
∀ i and ∀ j (3)  

where the last expression follows from the previous two but is expressed 
in marginal form, as in Röver (2020). This marginal form can be further 
extended to be conditional on observable variables, common across the 
θ̂ ij’s, as we do in our meta-regression analysis. 

The variance of the effect size distribution τ2 is a crucial measure of 
how useful aggregation of estimates will be. If τ2 is zero, then all studies 

Table 1 
Partial correlation coefficients from the studies used in full sample meta-analysis.  

Study & Year Median Mean Weighted Average Type of Crime Individual or Area-level Addresses Endogeneity 

Aizer and Currie (2019) 0.027 0.019 0.019 Violent and non-violent Individual Yes 
Barrett (2017) 0.556 0.556 0.589 Violent Area No 
Beckley et al. (2018) 0.065 0.061 0.063 Violent and non-violent Individual No 
Billings and Schnepel (2018) 0.122 0.113 0.103 Violent and non-violent Individual Yes 
Curci and Masera (2018) 0.027 0.043 0.029 Violent Area Yes 
Dills et al. (2008) 0.022 0.021 0.021 Violent and non-violent Area No 
Feigenbaum and Muller (2016) 0.054 0.056 0.053 Only Homicide Area Yes 
Fergusson et al. (2008) 0.080 0.079 0.080 Violent and non-violent Individual No 
Grönqvist et al. (2020) 0.002 0.003 0.003 Violent and non-violent Individual Yes 
Lauritsen et al. (2016) 0.740 0.495 0.742 Violent and non-violent Area No 
Lersch and Hart (2014) 0.043 0.043 0.043 Violent and non-violent Area No 
Manduca and Sampson (2019) 0.087 0.087 0.087 Violent and non-violent Individual No 
Masters et al. (1998) 0.051 0.061 0.061 Violent and non-violent Area No 
McCall and Land (2004) − 0.017 − 0.017 − 0.017 Only Homicide Individual No 
Mielke and Zahran (2012) 0.526 0.497 0.515 Violent Area No 
Needleman et al. (2002) 0.336 0.307 0.324 Non-violent Individual No 
Nevin (2000) 0.914 0.912 0.937 Violent Area No 
Nevin (2007) 0.808 0.710 0.874 Violent and non-violent Area No 
Nkomo et al. (2017) 0.004 0.052 0.088 Violent Individual No 
Reyes (2007) 0.059 0.053 0.053 Violent and non-violent Area Yes 
Reyes (2015) 0.026 0.036 0.029 Violent and non-violent Individual Yes 
Sampson and Winter (2018) − 0.065 − 0.046 − 0.046 Violent and non-violent Individual No 
Stretesky and Lynch (2004) 0.396 0.352 0.331 Violent and non-violent Area No 
Taylor et al. (2018) 0.371 0.377 0.429 Violent Area No 

Notes. Table shows median and mean partial correlation coefficient (PCC) estimates from each study of the effect of lead on crime. These averages are computed from 
542 estimates from 24 studies used for the full sample meta-analysis. It also shows an average where estimates are combined in a weighted average with the weights 
equal to one divided by the standard error. Table also shows what type of crime was used as dependent variable in each study, whether the study unit of interest was an 
individual or a geographic area, and whether any estimates in the study used a design that attempted to account for endogeneity. All coding is done at an estimate level, 
so a study may include both “addresses endogeneity” and “correlational” estimates, violent and non-violent estimates etc. 

Table 2 
Estimated elasticities in studies used in elasticity subsample meta-analysis.  

Study & Year Median Mean Weighted Average Type of Crime Individual or Area-level Addresses Endogeneity 

Barrett (2017) 0.68 0.68 0.61 Violent Area No 
Curci and Masera (2018) 0.20 0.22 0.12 Violent Area Yes 
Feigenbaum and Muller (2016) 0.72 0.73 0.32 Only Homicide Area Yes 
Fergusson et al. (2008) 2.45 2.14 0.94 Violent and non-violent Individual No 
Grönqvist et al. (2020) 0.04 0.06 0.07 Violent and non-violent Individual Yes 
Mielke and Zahran (2012) 0.53 0.53 0.48 Violent Area No 
Reyes (2007) 0.74 0.61 0.29 Violent and non-violent Area Yes 
Reyes (2015) 0.50 0.64 0.40 Violent and non-violent Individual Yes 
Sampson and Winter (2018) − 0.22 − 0.29 − 0.12 Violent and non-violent Individual No 
Stretesky and Lynch (2004) 0.15 0.15 0.15 Violent and non-violent Area No 
Taylor et al. (2018) 0.24 0.25 0.26 Violent Area No 

Notes. Table shows median and mean elasticity estimates from each study of the effect of lead on crime. These averages are computed from 312 estimates from 11 
studies used for the “elasticity” subsample. It also shows an average where estimates are combined in a weighted average with the weights equal to one divided by the 
standard error. Table also shows what type of crime was used as dependent variable in each study, whether the study unit of interest was an individual or a geographic 
area, and whether any estimates in the study used a design that attempted to account for endogeneity. All coding is done at an estimate level, so a study may include 
both “addresses endogeneity” and “correlational” estimates, violent and non-violent estimates etc. 
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are estimating the exact same effect and it is only the study variances 
that affect how well they can predict θj+1. This we call the common 
effect model following the Rice et al. (2018) terminology. As τ2 grows 
larger, aggregation becomes less useful. τ2→∞ Represents an “apples 
and oranges” comparison where meta-analysis should never be 
undertaken. 

4.2. Between-study heterogeneity 

We begin investigating between-study heterogeneity in effect sizes 
by plotting each study’s weighted average PCC along with their 95% 
confidence intervals in Fig. 7 and doing the same with the elasticities in 
Fig. 8. 

We show the common and random effects estimates at the bottom of 
each figure. Both estimates are weighted averages, where more precise 
estimates get more weight. However, the random effects estimate will 
give more equal weight to each study the larger the estimate of between- 
study heterogeneity. See appendix C for more details on the calculations. 
The PCC common effects point estimate is 0.01 and the random effects 
0.17, while the elasticity common effects estimate is 0.13, and the 
random effects is 0.19. The difference between the common and random 
effects estimates indicates that between-study heterogeneity is impor-
tant, as the lower the estimated heterogeneity between studies, the 
closer the random effects estimate will be to the common effects. 

It is unlikely that the only source of this heterogeneity is the random, 
unobservable variances σ2

ij and τ2. Distribution (3) can be extended to be 
conditional on a 1 × K vector of variables xij. In this case the study 
specific estimates θj are a function of this variation in x and we have the 
conditional distribution: 

θ̂ ij

⃒
⃒
⃒ σ2

ij, τ2, xij , β ∼ N
(

x′

ijβ, σ2
ij + τ2

)
∀ i and ∀ j (4) 

If these variables are observable, we can include them in our 

estimation. To investigate sources of observable between-study hetero-
geneity, Table 3 splits the data into further sub-samples, based on 
common characteristics. These characteristics are also used as covariates 
in the meta-regression analysis and described fully in section 4.4. We 
then compare three measures of between-study heterogeneity for each 

sample, τ̂2, ̂I
2 

, and Ĥ
2
. For each of these measures, the higher they are, 

the higher the estimated between-study heterogeneity. 
τ̂2 is an estimate of the variance of the effect size distribution in (3) 

using the DerSimonian and Laird (1986) method. It is measured in the 
same units as the effect sizes, which is either PCCs or elasticities in our 
analysis. The larger is τ̂2 then the greater the dispersion of the “true” 
effect sizes each study is attempting to estimate. 

Î
2 

is an estimate of the proportion of observed variance between 
effect sizes that is due to effect size heterogeneity, as opposed to sam-
pling variation. It is a figure between 0% and 100%. If 100%, it means all 
the observed variation is due to between-study effect size heterogeneity. 
If 0% it means the effect being estimated is homogeneous between 
studies, and all observed variation is due to sampling error. 

Ĥ
2 

is more complicated to interpret. It is the residual standard de-
viation from regressing the t-statistic of each effect size on its precision. 

Ĥ
2 

of 1 means that all studies are estimating the exact same effect. The 

larger Ĥ
2 

is, the greater the between-study effect size variation. 

Ĥ
2 

and ̂I
2 

are sensitive to the number of estimates and the variation 

in the standard error of those estimates. ̂I
2 

tends to 100 as the number of 
estimates included increases. ̂τ2 is less sensitive to the number of studies 

used in the analysis compared to ̂I
2 

and Ĥ
2
, but it does not give a sense of 

how important between-study heterogeneity is compared to within- 
study sampling variation. 

Looking at Table 3 we can see which variables seem important for 
heterogeneity and the different estimated average effect sizes. The PCC 
subsample of studies which control for endogeneity has a lower esti-
mated heterogeneity and a smaller effect size compared to the correla-
tional sample. Endogeneity can arise from unobserved variables 
correlated with both crime and lead. These could bias upwards the es-
timate of the effect of lead on crime. We cannot rule out that these 
variables may cause individuals both to commit more crime and be more 
exposed to lead, rather than lead being the cause. Therefore, the dif-
ference between the “addressing endogeneity” sample and the full 
sample could be related to these factors. The elasticity subsample also 

Fig. 7. Forest Plot, Partial Correlations 
Notes. Chart shows weighted average partial correlation coefficients (PCCs) of 
each study’s effect size along with corresponding 95% confidence intervals. The 
weighted averages are calculated by first normalizing the PCCs so that confi-
dence intervals can be constructed, then the fixed effects average is calculated, 
finally the estimates are converted back to PCCs (see appendix B for details). 
Bottom of table shows common effects and random effects estimates for all 
studies combined (see appendix C for details). Numbers on right are the point 
estimates and the 95% confidence intervals. 

Fig. 8. Forest Plot, Elasticities 
Notes. Chart shows weighted average of each study’s effect sizes converted to 
elasticities along with corresponding 95% confidence intervals. Bottom of table 
shows common effects and random effects estimates for all studies combined 
(see appendix C for details). Numbers on right are the point estimates and the 
95% confidence intervals. 
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shows lower heterogeneity than the full sample, but is similar to the 
“elasticity and addressing endogeneity” sample. 

Studies that look at individual-level data on the propensity to 
commit crime have lower estimated heterogeneity and estimated effect 
size compared to studies that look at crime committed within a 
geographic area. Studies which use homicide as the dependent variable 
appear to have less heterogeneity and find a smaller effect size. This 
reduction in heterogeneity may be due to lower measurement error in 
homicide data compared to other types of crime, combined with more 
similar classification of this crime across countries, and therefore less 
noise in the data. Finally, when race, gender, education, and income 
covariates are included in an estimation, these tend to lower the effect 
size. These subsamples also show less between-study heterogeneity than 
those which do not include these covariates. The estimated differences 
in effect size and heterogeneity between subsamples indicates observ-
able variation is important and must be considered when we estimate an 
average effect. We incorporate the observable variation indicated in 
Table 3 into our meta-regression analysis in section 4.4. 

A further, and common source of heterogeneity in effect sizes in meta 
regression analysis comes from publication bias. We investigate this in 
the next section. 

4.3. Publication bias 

Publication bias is a well-known problem across disciplines (see for 
example: De Long and Lang, 1992; Ioannidis, 2005; Doucouliagos and 
Stanley, 2013; Ioannidis et al., 2017; and Ferraro and Shukla, 2020). 
Papers which contain statistically significant effect sizes are more likely 
to be published than those which show no effects, or those which contain 
counter-intuitive results (also known as the bottom-drawer problem). It 
is standard practice to test for the presence of publication bias in 
meta-analysis. 

The first and most common step is to simply chart the data and 
visually inspect for bias, using a funnel plot. Fig. 9 plots effect sizes 
against their precision. The upper funnel shows the PCCs for the full 
sample, and the lower the elasticities for that subsample. A funnel with 

Table 3 
Random effects and heterogeneity estimates by subsample.  

Sample RE Estimate SE τ̂2 
Î

2 
Ĥ

2 Studies Estimates (N) 

Full Sample 0.166 0.002 0.002 99 108 24 542 
Addressing Endogeneity 0.014 0.001 0.000 90 10 7 220 
Correlational 0.505 0.014 0.059 99 159 20 322 
Individual-level 0.008 0.001 0.000 95 20 11 125 
Area-level 0.388 0.010 0.033 99 123 13 417 
Homicide 0.172 0.012 0.010 94 18 8 103 
Violent Crime 0.261 0.008 0.016 99 72 18 339 
Non-Violent Crime 0.492 0.040 0.120 99 145 15 82 
Total Crime 0.077 0.003 0.001 99 152 11 119 
North America 0.217 0.006 0.011 98 58 19 386 
Europe 0.069 0.003 0.001 100 201 2 85 
Direct Lead Measure = TRUE 0.092 0.026 0.031 95 19 9 54 
Direct Lead Measure = FALSE 0.171 0.002 0.002 99 118 15 488 
Representative Estimate = TRUE 0.186 0.020 0.006 98 54 24 24 
Representative Estimate = FALSE 0.167 0.002 0.002 99 111 24 518 
Control Gender = TRUE 0.007 0.001 0.000 95 20 8 103 
Control Gender = FALSE 0.355 0.007 0.017 99 123 18 439 
Control Race = TRUE 0.084 0.008 0.005 97 29 13 114 
Control Race = FALSE 0.190 0.003 0.002 99 128 14 428 
Control Income = TRUE 0.028 0.002 0.000 97 31 13 174 
Control Income = FALSE 0.399 0.008 0.016 99 139 16 368 
Control Education = TRUE 0.006 0.001 0.000 95 19 11 106 
Control Education = FALSE 0.345 0.007 0.015 99 124 17 436 
Elasticity Sample* 0.189 0.008 0.010 91 12 11 312 
Elasticity Sample (Addressing Endogeneity)* 0.198 0.012 0.016 88 8 5 211 

Notes. *Indicates values are in elasticities, not PCCs. RE Estimate is a random effects, meta-analysis estimate computed using DerSimonian and Laird (1986) method. SE 

is the standard error of the RE estimate. τ2, ̂I
2
, and Ĥ

2 
are estimates of between-study heterogeneity. See section 4.2 for more details.  

Fig. 9. Funnel Charts 
Notes. PCC = Partial Correlation Coefficient. Precision is one divided by the 
standard error. “Significant” means statistically significant at the 95% confi-
dence level using two-sided critical values of a normal distribution. 
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no bias should be symmetrical around central tendencies. The estimates 
will tend to spread out as the precision decreases, but they should do so 
symmetrically if this is only due to sampling noise. Fig. 9 shows a pro-
nounced asymmetry in the estimates, suggesting there may be a positive 
bias. There appears to be less asymmetry in the elasticity panel. This 
suggests these studies may be more similar, and/or have less bias. Some 
of the studies with the largest effect sizes did not report enough infor-
mation for elasticities to be calculated, which may be the reason for this. 
Although there is asymmetry in both panels, suggesting publication bias, 
it is also possible this is due to heterogeneity within the sample. We 
explore this possibility in section 4.4. 

More formal testing of publication bias is also possible. There are 
many tests for publication bias. We use seven methods, which we split 
into linear and non-linear methods. Linear tests involve regressions of a 
measure of sampling uncertainty on the estimated effect. A linear rela-
tionship between the estimate and its standard error, as Fig. 9 implies, 
would indicate the presence of publication bias (see appendix D). This 
naturally leads to the estimating equation (5). 

θ̂ ij = θ+ βF σ̂ ij + uj + εij; where εij ∼ N
(

0, σ2
ij

)
and uj ∼ N

(
0, τ2) (5) 

This is the combined Funnel Asymmetry Test (FAT) and Precision 
Effect Test (PET). Here the FAT is βF, and is an estimate of the size and 
sign of publication bias. It is a function of the inverse Mills’ ratio. If 
positive then estimates that are positive are more likely to be published 
than negative ones. This test also gives an estimate of θ that takes into 
account this bias, called the PET. Equation (5) nests the common effects 
model where τ2 is zero. 

The test in (5) would be subject to heteroskedasticity, as can be 
observed from Fig. 9. We have estimates of the heteroskedasticity in σ̂ ij. 
These can therefore be used to weight the regression and we estimate the 
test with weighted least squares following Stanley (2008). 

t̂ ij = θ
1
σ̂ ij

+ βF + vj + eij (6) 

Here the dependent variable t̂ ij is now the t-ratio, rather than the 
estimate alone. The intercept of the regression is the FAT and the 

coefficient on 1
σ̂ ij 

is the PET. 

We estimate four variations of linear publication bias tests. First with 
OLS and clustered standard errors by study, but no study fixed effects; 
second, a variation of this where we regress on the variance rather than 
the standard error (Stanley and Doucouliagos, 2014); third a full hier-
archical FAT-PET with study fixed effects. We estimate this with 
restricted maximum likelihood (REML), as Monte Carlo simulations 
suggest REML performs well for unbalanced panels (Baltagi et al., 2002). 
Finally, we use the square root of the sample size as an instrumental 
variable for the precision. This last method allows for the fact some 
estimation techniques may be less efficient but lead to unbiased 
estimates. 

We also run three non-linear methods. The Weighted Average of 
Adequately Powered Estimates (WAAP) of Stanley et al. (2017) esti-
mates which studies are post-hoc “adequately powered” and only uses 
these to calculate an average effect size. The Trim and Fill (TF) method 
(Duval and Tweedie, 2000) adds imputed studies on the sparse side of 
the funnel before calculating an average effect. The Andrews and Kasy 
(2019) method reweights all observations by estimated relative publi-
cation probabilities and calculates an average effect size after 
reweighting. See appendix D for a full discussion of all methods. 

Table 4 shows the results of all tests. We estimate the tests with four 
different samples. Panel A is the full sample using PCCs, panel B is all 
studies which address endogeneity (PCCs), Panel C is only studies with 
elasticity estimates available, and panel D is studies which both address 
endogeneity and have elasticities. Linear methods allow for not only an 
effect beyond bias estimate but an indication of the strength of bias in 
the FAT coefficient. In all four panels every estimate of publication bias 
is positive, indicating positive estimates are more likely to be published. 
Only the FAT-PEESE estimate in panel B, and the IV estimate in panel C, 
have 95% intervals that cover zero. In every panel, the effect beyond 
bias estimates are all smaller than the random effects estimate of 
Table 3, indicating the effect size is overstated due to publication bias. 

The estimates for the full sample and addressing endogeneity sample 
(panels A and B) are all close to zero, save the full sample Andrews-Kasy 
estimate which is − 0.77. However, the 95% confidence interval covers 

Table 4 
Effect beyond bias and publication bias estimates.   

FAT-PET FAT-PEESE Multi-level FP IV WAAP TF AK 

Panel A – Full Sample, PCCs 
Effect Beyond Bias − 0.003 (0.002) 0.005 (0.002) 0.006 (0.004) − 0.004 (0.002) 0.005 (0.002) 0.008 (0.018) − 0.773 (0.438) 
Publication bias 5.026 (1.283) 32.227 (8.638) 3.502 (0.885) 5.062 (1.297) . . . 
Groups 24 24 24 24 . . 24 
Observations 542 542 542 542 362 542 542         

Panel B – Only Addressing Endogeneity Sample, PCCs 
Effect Beyond Bias 0.001 (0.001) 0.004 (0.001) 0.001 (0.001) 0.001 (0.001) 0.003 (0.000) 0.007 (0.002) 0.001 (0.002) 
Publication bias 2.159 (0.431) 11.305 (10.186) 1.982 (0.434) 2.159 (0.430) . . . 
Groups 7 7 7 7 . . 7 
Observations 220 220 220 220 55 220 220 
Panel C – Only Elasticity Sample* 
Effect Beyond Bias 0.110 (0.029) 0.128 (0.021) 0.107 (0.010) − 0.056 (0.087) 0.126 (0.022) 0.145 (0.018) 0.025 (0.069) 
Publication bias 1.202 (0.545) 3.355 (0.805) 1.966 (0.681) 4.579 (2.935) . . . 
Groups 11 11 11 11 . . 11 
Observations 312 312 312 312 122 312 312 
Panel D –Only Elasticity and Addressing Endogeneity Sample* 
Effect Beyond Bias 0.040 (0.007) 0.084 (0.019) 0.084 (0.016) 0.013 (0.014) 0.116 (0.028) 0.081 (0.015) 0.018 (0.021) 
Publication bias 1.801 (0.440) 4.371 (1.127) 1.392 (0.619) 2.186 (0.514) . . . 
Groups 5 5 5 5 . . 5 
Observations 211 211 211 211 70 211 211 

Notes*Indicates effects are elasticities rather than PCCs. Estimates are presented with their standard errors in brackets. FAT-PET is Funnel Asymmetry Test and 
Precision Effect Test (Stanley and Doucouliagos, 2014). FAT-PEESE is Funnel Asymmetry Test and Precision Effect Estimate with Standard Error. The multi-level FP is a 
FAT-PET multi-level model with fixed effects for each study. IV is a FAT-PET regression with square root of sample size used as an instrumental variable for the 
precision using two stage least squares. WAAP (Stanley et al., 2017) is the Weighted Average of Adequately Powered Estimates, where studies below a certain esti-
mated power are removed before calculating the effect. TF is Trim and fill (Duval and Tweedie, 2000), which removes outlier studies and then adds imputed studies 
before calculation an average effect. AK is the Andrews-Kasy method (Andrews and Kasy, 2019), which is a step function selection model which reweights the observed 
sample with estimated publication probabilities. See Appendix D for full explanation of each method. 
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zero, and this estimate is the outlier. For the elasticity sample (panel C) 
they vary from 0.15 to − 0.06, but most estimates are around 0.11. For 
elasticity estimates that address endogeneity, the estimates range from 
0.01 to 0.08. As a robustness check, we also estimate all methods using 
only representative estimates in appendix E and the results are similar. 

All tests suggest publication bias is present in the sample. This should 
not be a surprise as Doucouliagos and Stanley, 2013; show that bodies of 
literature with theoretically implausible signs or sizes tend to exhibit 
more publication bias. It is, of course, theoretically implausible that an 
increase in lead pollution would cause a decrease in crime, and therefore 
it may be researchers do not write up papers showing such findings. 
Nevertheless, we should expect negative estimates due to sampling 
noise. This may explain the finding of publication bias in all tests and the 
asymmetry in the funnel plots. 

The tests also suggest the true mean effect size of lead on crime may 
be close to zero, but this could be due to the relatively small sample, or to 
characteristics of the studies. These characteristics can be investigated 
more thoroughly with meta-regression analysis. 

4.4. Meta-regression analysis 

Meta-regression analysis (MRA) follows from (4) where we include 
common observable variation in our estimation. Given all tests suggest 
the presence of publication bias we include the FAT in all regressions. 
We also weight all regression covariates by the standard errors as in (6). 
Therefore, the specification is the same as in (6) except we now also 
regress on a vector of observable covariates, xij, weighted by the stan-
dard errors of the estimate. This includes the precision, and the coeffi-
cient on the precision is now only an estimate of the average effect size 
when all other covariates are set to zero. The meta-regression is shown 
in (7). 

t̂ ij = βF + z′

ijβ + vj + eij (7)  

where zij is a 1 × K vector of weighted observable covariates. 
The covariates included are based on common characteristics of the 

studies that are suggested by the literature. Their descriptive statistics 
are included in Table 5. The majority are dummy variables indicating 
whether that characteristic is present for that estimate. All variables are 
coded at estimate level, not at study level. That is, different estimates 
from the same study may have different characteristics, and therefore 
have different values for the covariates. There is a dummy variable that 

equals one when an estimate comes from a quasi-experimental study 
design that attempts to deal with endogeneity concerns. There is a 
dummy variable which is one when an estimate is of crime in an area, 
and zero when it is at the individual level. There are four dummy var-
iables which indicate whether specific controls were included in the 
estimation. Lead exposure is correlated with poverty (Baghurst e al. 
1999) and race (Sampson and Winter, 2018), may have different effects 
on men and women (Denno, 1990), and may have a relationship with 
educational outcomes (Fergusson et al., 2008). Therefore, when an 
estimation includes these variables we might expect it to influence the 
estimate. The interpretation of the effect of these variables depends on 
where they are in the causal chain. If these variables are confounders, 
causing changes in lead and changes in crime, then omitting them will 
tend to overstate the effect of lead on crime (given they change both in 
same direction). If they are mediators, changed by lead and then 
changing crime, then conditioning on them can lead to understating the 
effect of lead on crime. This is especially important when study designs 
do not use some method to deal with endogeneity issues. Of course, 
there are other variables that may be important controls, but these were 
not found to be common enough across studies to include. 

Next there are three dummy variable that describe what type of 
crime was used as the dependent variable (homicide, violent, and non- 
violent), with a reference group of total crime. This allows us to test 
whether the different mechanisms proposed in section 2 matter. The 
violent crime category nests homicide within it. They are separate cat-
egories because homicide data is thought to be the best quality crime 
data, and thus less likely to suffer from bias (Fox and Zawitz, 2000). We 
next have two dummy variables representing possible estimation effects. 
One for if simple OLS was used, another for if maximum likelihood was 
used. The reference group is any other estimation such as GMM or mean 
differences. We have two dummy variables for further estimation ef-
fects. One for if panel data were used, and another for if the results are 
reported as odds ratios. 

A further two dummy variables are geographic dummies that equal 
one when an estimate come from a either North America or Europe, with 
the rest of the world as the reference group. 70% of estimates use data 
from North America. The final dummy variable equals one when a direct 
measure of lead, from either blood, bone, or dentine samples, is used in 
the estimation and zero when a proxy measure or estimate, such as 
leaded gasoline use in an area, is used. This allows us to test whether 
there is a systematic difference in effect sizes found when lead levels are 
taken directly from subjects, which we might expect to give a more 
accurate measure of the true effect, rather than proxied. The final three 
covariates are the publication year, sample size, and the number of 
covariates included in the estimation. These variables have been 
standardised to aid the restricted maximum likelihood convergence. 

We estimate many specifications due to model uncertainty. Our 
sample is relatively small and coefficient estimation varies significantly 
in alternative specifications. The number of different covariate combi-
nations is 2K where K is the total number of covariates. It is common in 
the meta-analysis literature to employ some method of model averaging 
or shrinkage to deal with model uncertainty. However, with this many 
covariates and modern computational power it is possible to estimate all 
2K specifications.2 In addition, Table 3 showed that some subsamples 
have substantially less heterogeneity than the full sample. It may be that 
these sub-samples suit aggregation better than the full sample. For 
example, we might expect studies with individuals as the unit of analysis 
to share much more common information than those that have a 
geographic area as the unit of interest. We therefore also estimate all 
covariate specifications for these subsamples. It is not possible to 

Table 5 
Descriptive Statistics of Covariates used in the Meta-Regression Analysis.  

Variable Mean Median Standard Deviation 

Control_gender 0.19 0 0.39 
Control_race 0.21 0 0.41 
Control_income 0.32 0 0.47 
Control_education 0.20 0 0.40 
Homicide 0.19 0 0.39 
Violent 0.63 1 0.48 
Non_Violent 0.15 0 0.36 
Both 0.22 0 0.41 
Area 0.77 1 0.42 
OLS 0.39 0 0.49 
ML 0.13 0 0.34 
Odds_Ratio 0.03 0 0.17 
Panel 0.67 1 0.47 
Addressing Endogeneity 0.41 0 0.49 
North America 0.71 1 0.45 
Europe 0.16 0 0.36 
Direct Lead Measure 0.10 0 0.30 
Publication Year* 2013 2015 6 
Number of Covariates*a 445 13 802 
Sample Size* 64,478 901 186,709 

Notes:*Indicates variables have been standardised. 
a Includes fixed effects for degrees of freedom adjustment. 

2 As a robustness check we perform Bayesian Model Averaging in appendix F. 
The posterior mean PCC using the full sample and evaluated at the sample 
averages is 0.09, lower than the method we use here. The elasticity posterior 
mean is also lower at 0.07. 
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estimate every combination as some dummy variables no longer have 
any variation in the subsamples, leading to collinearity. This can also 
lead to other variables being excluded as they become the new base case 
(for example if there are no studies from outside Europe or North 
America in a subsample, then Europe becomes the base case). A full list 
of the covariates included for each subsample is in Table 6. We estimate 
every possible combination of covariates for the full sample and the 
subsamples. We include the FAT, the estimate of publication bias. We 
estimate with REML and include study fixed effects. 

We do not interpret the coefficients on the covariates following best 
practice (see Westreich and Greenland, 2013 and Keele et al., 2020), as 
they are not identified. Instead, we use the information from each 
meta-regression specification to construct a distribution of estimates of 
the average effect of lead on crime. We are now estimating an average 
effect conditional on the observable heterogeneity in our specifications. 
In practice, meta-analysis tends to do this in two ways, either by using 
the sample averages or by taking some “ideal” specification. We do both. 
That is, for each specification we generate a predicted estimate of the 
effect of lead on crime, using both the sample averages, or by using an 
ideal specification, and not including the FAT in the predicted value (i.e. 
removing the publication bias). 

The ideal specification we use is one that includes controls for race, 
education, income and gender, that uses individual data, directly 
measured lead levels, controls for endogeneity, uses panel data, is esti-
mated without just using simple OLS or ML, uses total crime as the 
dependent variable, uses North American data (as most of our sample is 
from there), and uses the sample averages for the publication year, 
sample size, and number of covariates. This ideal specification is chosen 
to represent a robust and high-quality estimation, and as such we would 
expect it be generally lower than the sample averages estimates. 

The means, medians, and standard deviations of the full sample and 
subsample estimates are presented in Table 7. The top panel shows the 
estimates effect sizes evaluated at the sample averages, while the bottom 
shows effect sizes evaluated at the “ideal” specification. The table also 
shows the number of specifications for each sample. The final column 
shows how many of the estimates fell outside of the feasible interval of 
the PCC [− 1,1]. This indicates whether there may be a misspecification 
issue with that particular sample estimation. 

The distribution of coefficient sizes for the full sample estimation is 
in plotted in Fig. 10, panel A. The left figure shows effect sizes evaluated 
at the sample averages, while the right shows effect sizes evaluated at 
the “ideal” specification In each there is a distribution of 524,288 esti-
mated effect sizes. The mean and median PCC for the sample averages 
distribution are 0.16 and 0.18 respectively, which is “moderately posi-
tive” according to the Doucouliagos (2011) taxonomy. The distribution 
appears to be bimodal with one peak close to zero and the other around 
0.2. The distribution of the ideal specification is not bimodal and is 
roughly symmetrical. The mean and median are 0.13 and 0.09 respec-
tively. As expected the ideal specification is lower than the sample 

Table 6 
Variables used in combinations for each sample estimation.  

Sample Variables Used 

Full Sample Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-Violent, 
Area dummy, OLS, ML, Odds Ratio, Panel dummy, 
Addressing Endogeneity, North America, Europe, 
Direct Lead Measure, Publication Year, Covariates, 
Sample Size 

Addressing Endogeneity 
Sample 

Control gender, Control race, Control income, 
Homicide, Violent, Non-Violent, Area dummy, OLS, 
Panel dummy, Publication Year, Covariates, 
Sample Size 

Correlational Sample Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-Violent, 
Area dummy, OLS, ML, Odds Ratio, Panel dummy, 
North America, Direct Lead Measure, Publication 
Year, Covariates, Sample Size 

Area-level Sample Control race, Control income, Control education, 
Homicide, Violent, Non-Violent, OLS, ML, Panel 
dummy, Addressing Endogeneity, Direct Lead 
Measure, Publication Year, Covariates, Sample Size 

Individual-level Sample Control gender, Control race, Control income, 
Control education, Violent, Non-Violent, OLS, ML, 
Odds Ratio, Panel dummy, Addressing 
Endogeneity, Direct Lead Measure, Publication 
Year, Covariates, Sample Size 

Homicide Sample Control race, Control income, OLS, Panel dummy, 
Addressing Endogeneity, Publication Year, 
Covariates, Sample Size 

Violent Crime Sample Control gender, Control race, Control income, 
Control education, Area dummy, OLS, ML, Panel 
dummy, Addressing Endogeneity, North America, 
Direct Lead Measure, Publication Year, Covariates, 
Sample Size 

Non-Violent Crime Sample Control gender, Control race, Control income, 
Control education, Area dummy, OLS, ML, Odds 
ratio, Panel dummy, Addressing Endogeneity, 
North America, Direct Lead Measure, Publication 
Year, Covariates, Sample Size 

Elasticity Sample Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-Violent, 
Area dummy, OLS, ML, Panel dummy, Addressing 
Endogeneity, North America, Direct Lead Measure, 
Publication Year, Covariates, Sample Size 

Elasticity and Addressing 
Endogeneity Sample 

Control gender, Control race, Control income, 
Homicide, Violent, Non-Violent, Area dummy, 
Publication Year, Covariates, Sample Size 

Notes. Table shows which covariates were included for each sub-sample esti-
mation. Inclusion depended on whether there was variation in the covariate for 
that subsample. 

Table 7 
Meta-analysis average estimates for the full sample and each subsample.  

Sample Mean Median SD N % < −

1 or > 1 

Sample averages 
Full Sample 0.16 0.18 0.07 524,288 0% 
Addressing Endogeneity 

Sample 
0.01 0.01 0.01 4096 0% 

Correlational Sample 0.29 0.29 0.10 131,072 0% 
Area-level Sample 0.25 0.26 0.06 16,384 0% 
Individual-level Sample 0.03 0.03 0.01 65,536 0% 
Homicide Sample 0.58 0.54 0.22 256 0% 
Violent Crime Sample 0.39 0.39 0.22 16,384 0% 
Non-violent Crime Sample 0.75 0.71 0.24 32,768 14% 
Elasticity Sample* 0.09 0.09 0.03 131,072 . 
Elasticity and Addressing 

Endogeneity Sample* 
0.10 0.09 0.04 1024 .  

Sample Mean Median SD N % < −

1 or > 1 

“Ideal” specification 
Full Sample 0.13 0.09 0.25 524,288 0% 
Addressing Endogeneity 

Sample 
0.01 0.01 0.02 4096 0% 

Correlational Sample 0.49 0.37 0.6 131,072 15% 
Area-level Sample 0.23 0.20 0.22 16,384 0% 
Individual-level Sample 0.02 0.02 0.04 65,536 0% 
Homicide Sample 0.28 0.27 0.17 256 0% 
Violent Crime Sample 0.57 0.14 1.29 16,384 36% 
Non-violent Crime Sample 1.26 0.58 3.50 32,768 64% 
Elasticity Sample* 0.09 0.05 0.20 131,072 . 
Elasticity and Addressing 

Endogeneity Sample* 
0.17 0.16 0.16 1024 . 

Notes. *Indicates values are elasticities rather than PCCs. Table shows results 
from combining multiple meta-regression estimates, each using different spec-
ifications. All regressions carried out by restricted maximum likelihood. This is 
done for the full sample and subsamples. N is the number of regressions carried 
out, each a different specification. The mean and median are the summary sta-
tistics of the average effect size from these regressions, given in Partial Corre-
lation Coefficients (PCCs) or elasticities. PCCs are bounded between − 1 and 1. 
The last column gives the percent of effects which fall outside this range. 
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averages. 
We next restrict the sample to only the studies that estimate a causal 

effect with quasi-experimental methods rather than an association: our 
“addressing endogeneity” sub-sample. This consists of seven studies and 
220 estimates. It is common in meta-analysis to exclude correlational 
studies altogether (e.g., Kraft et al., 2018). Although we have not 
excluded those studies in this meta-analysis, we now examine what a 
meta-analysis estimate with only causal studies would be. We saw in 
Table 3 that the addressing endogeneity subsample has lower 
between-study heterogeneity than the full sample, so aggregation may 
yield comparatively more information. 

We plot the sub-sample average specification and ideal specification 
in Fig. 10, panel B (excluding those variables that cannot be included in 
the estimation, see Table 6). The distribution of the sample average 
predicated values is tight around zero with a mean and median of 0.01, 
and a sample standard deviation of 0.01. The “ideal” specification also 

has a mean and median of 0.01. The results suggest there is a systematic 
difference between the “addressing endogeneity” studies and the rest of 
the sample. 

In Fig. 11, we carry out the same exercise except only for those 
studies that have elasticity estimates available. The elasticity effect sizes 
in panel A, Fig. 11 are for the full elasticity sample. The mean and 
median effect size, evaluated at the sample averages, are both an elas-
ticity of 0.09. Evaluated at the “ideal” specification they are 0.09 and 
0.05 respectively. The “ideal” distribution shows more heterogeneity 
and is bimodal. The standard deviation is 0.2, much higher than the 0.03 
evaluated at the sample averages. 

Panel B of Fig. 11, the addressing endogeneity and elasticity sub-
sample, is very similar to panel A. The mean is 0.10 and the median 
elasticity is 0.09 when evaluated at the sample averages. When evalu-
ated at the “ideal” specification the addressing endogeneity, elasticity 
sample mean is 0.17 and the median is 0.16. These are considerably 
larger than when evaluated at the sample averages, or when looking at 

Fig. 10. Density of Meta-Analysis Average Effect Size Estimates from Full 
Sample 
Notes. Chart shows densities for the distribution of meta-regression estimated 
average effect sizes. Chart on left shows estimated average effect for each 
specification evaluated at the sample averages. Chart on right shows estimated 
average effect for each specification evaluated at an “ideal” specification. X axis 
truncated at feasible interval of a PCC, [-1,1]. 

Fig. 11. Density of Meta-Analysis Average Effect Estimates for Elasticity Sub-
sample 
Notes. Chart shows densities for the distribution of meta-regression estimated 
average effect sizes for the addressing elasticity sub-sample. Chart on left shows 
estimated average effect for each specification evaluated at the sample aver-
ages. Chart on right shows estimated average effect for each specification 
evaluated at an “ideal” specification. 
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the “ideal” specification for the full elasticity sample. In both panel A 
and B the “ideal” specification distributions have a larger variance than 
the sample average distributions. 40% of the “ideal” specifications yield 
a negative elasticity when using the full elasticity sample, and 15% are 

negative when using the addressing endogeneity, elasticity sample. In 
contrast almost no estimates are negative when evaluated at the sample 
averages in panel A or B. This suggests the “ideal” specification is much 
more sensitive to model changes than when we evaluate at the sample 

Fig. 12. Densities of Meta-Analysis Average Effect Estimates From Subsamples 
Notes. Chart shows densities for the meta-regression estimated average effect sizes for a number of subsamples. Top chart shows estimated average effect for each 
specification evaluated at the sample average for each subsample. Bottom chart shows estimated average effect for each specification evaluated at an “ideal” 
specification. X axes truncated at feasible interval of a PCC, [-1,1]. 
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averages. 
We next plot several other subsample distributions of interest in 

Fig. 12. The difference between the area and individual sample is 
striking. The area sample means and medians are much larger than the 
individual sample for both the sample average specification and the 
ideal specification. The individual sample mean and median PCCs are 
small and the distributions are tight around the means compared to the 
area sample. This suggests that covariates matter less for the individual 
sample effect sizes compared to the area sample. Similar to the area- 
individual comparison, the correlational sample has much higher 
means and medians than the addressing endogeneity sample. 

Comparing homicide, violent, and non-violent crime samples we can 
see they all have large mean and median PCCs, but the non-violent and 
violent subsamples have a portion of the distribution outside [− 1,1], 
suggesting misspecification and that the results may not be reliable. The 
standard deviations for these tend to be much larger as well. Further-
more, due to the lack of homicide estimates, only 256 specifications 
could be run without convergence issues. Overall, the results suggest 
that lead affects all types of crime, but we cannot say if it has a bigger 
effect on some types than others. We cautiously suggest that if lead does 
have an effect on crime it is across all categories of crime. 

4.5. Explaining the 20th century crime decline 

Our calculated elasticities allow us to estimate how much of the fall 
in crime observed in the second half of the 20th century was caused by 
lead. We first use the dramatic fall in homicide in the US as an example. 
The median blood lead level in children in the US fell 88% from 1976 to 
2009. The US homicide rate fell 54% from its peak in 1989–2014. Given 
our main elasticity estimate of 0.09 for the full elasticity sample eval-
uated at the sample averages (with standard deviation of 0.03), this 
implies 5-11 percentage points of the 54% fall are due to lead, with the 
point estimate being 8. This would mean that lead accounts for 15% of 
the decrease in homicide. If we use the full range of elasticity mean 
estimates in Table 7 we have values from 0.05 to 0.17. These would 
imply 4–15 percentage points of the 54% fall were accounted for by 
lead. This would mean 7–28% of the fall in homicide was due to falling 
lead levels. 

Our estimates imply lead pollution is an important factor in reducing 
homicides, and lead abatement has saved lives, but it does not account 
for the majority of the fall. Depending on the specification, we conclude 
that 93%–73% of the fall in homicide in the US is unaccounted for. 

We next carry out estimates of how much of the urban/rural violent 
crime convergence in Fig. 4 can be explained by the relatively higher 
blood lead levels in urban areas in the 1970s. Average blood lead levels 
in under 5s (geometric mean) declined by 15 μg/dL in large population 
MSAs from 1976 to 2011, and by 12.7 in smaller MSAs and rural areas 
over the same period. The difference in the violent victimisation rate per 
1000 people between urban and rural areas, as measured by the NCVS, 
was 41 in 1993, and 7 in 2015. Given the lag in time between childhood 
lead exposure to adult criminal acts, we believe these differing periods 
give enough time for the lead change to take effect. The gap in victim-
izations declined by 34 per 1000 people in this period. Using an elas-
ticity of 0.09, we estimate the relative change in blood lead levels would 
account for 3.6 of these victimizations. That is, the difference in lead 
levels accounts for 11% of the convergence in the victimisation rate. 
Using the 0.05–0.17 range of elasticity estimates in Table 7, means that 
lead accounts for between 2 and 7 of the victimisation gap difference. 
This would explain 6%–20% of the convergence in violent victimisation 
rates. While not negligible, this leaves a large part of the convergence in 
urban/rural crime rates unexplained as well. 

5. Discussion and conclusion 

Changes to the amount of lead in the environment have been put 
forward as one of the main causes of the decrease in crime, especially 

homicide, in many western countries. We performed the first meta- 
analysis of the effect of lead on crime. We find there is publication 
bias in the lead-crime literature, and that meta-analysis estimates that 
do not control for this will overstate the effect of lead on crime. Using 
meta-regression, taking into account publication bias and between- 
study heterogeneity, our main estimates are an average effect size of 
0.16 as a partial correlation, or 0.09 as an elasticity. When using the 
larger PCC sample, we find that the average meta-analysis estimate for 
studies that address endogeneity is much smaller than for the full sam-
ple, or for the correlational sample. However, when using the elasticity 
sample, the average meta-analysis estimate for studies that address 
endogeneity tended to be similar to the full elasticity sample, except 
when evaluated at the “ideal” specification, in which case it was larger. 
The average effect size estimate for studies that have individuals as the 
unit of interest is much smaller than for the sample of studies that have a 
geographic area as the unit of interest. When we examined the differ-
ences between lead’s effect on homicide, violent and non-violent crime, 
we could not confidently state there was any difference between them. 

Finally, we performed calculations to estimate the share of the 
decline in crime in the US that is accounted for by reductions in blood 
lead levels. We estimate that of the total 54% fall in homicides observed 
in the US in 1976–2009, reduced blood lead levels accounted for 4–15 
percentage points. A substantial decrease. However, this was only a 
7–28% share of the total fall, leaving 93-72% unaccounted for. Simi-
larly, we find that the relative changes in blood lead levels account for 
6–20% of the convergence in urban and rural violent crime rates 
observed in the US, leaving much of this convergence unexplained. 

Overall, the results suggest that declines in lead pollution reduce 
crime but are not the cause of the majority of the fall in crime observed 
in many western countries. We are unable to provide estimates on the 
size of other causes here but hope our results can provide a rough 
benchmark for relative importance in future meta-analyses. It is possible 
that the large differences in our samples can be reconciled. For example, 
the large difference between the individual and area samples may be 
because crime has fallen at the extensive margin rather than the inten-
sive margin. Tcherni-Buzzeo (2019) observe that around 5% of the 
population are responsible for 50% of crime, and that the fall in crime in 
the US is likely due to falls in this high-crime population, rather than less 
crimes per individual in that population. If less lead pollution only 
meant less probability of committing crime for this small slice in the 
population, it might nevertheless lead to a large fall in crime at the area 
level. A second possibility is that relatively small effects of lead at the 
individual level can be exacerbated by peer effects from other lead 
affected individuals.3 Recent work has found these peer effects can even 
affect those without elevated blood lead levels (Gazze et al., 2021). In 
areas with high levels of lead, the individual effects of lead may be 
compounded by peers also having high levels of lead, leading to a much 
larger impact at the area level. 

There are several limitations to our analysis. Most importantly, the 
sample size is not large. We have 24 studies and 542 estimates, this is not 
unusual for a meta-analysis but, particularly for our subsample esti-
mates, this could play a part in the differences. It may explain why so 
much of the distribution for the different types of crime in Table 7 were 
outside the feasible PCC interval of [− 1,1]. We attempt to mitigate this 
by using various tests for publication bias, and estimating many different 
specifications, but we cannot rule out that the results are due to small 
sample effects. Secondly, the between-study heterogeneity is large in our 
sample. This calls into question how comparable the studies are. This is 
to be expected as studies use different concepts and measures of crime 
and lead, different units of interest, and different estimation techniques. 
We try to mitigate this by converting to PCCs or elasticities, using 
different sub-samples that have lower between-study heterogeneity, and 
using meta-regression with covariates. However, even with these 

3 We thank an anonymous reviewer for this suggestion. 
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mitigations, it may be that the literature is not comparable and therefore 
meta-analysis estimates will be noise. In this case it casts doubt on the 
external validity of the studies examining the lead-crime hypothesis. The 
solution would be far more studies that estimate elasticities using 
comparable measures of lead and crime. 

For policymakers, our results are a warning against assuming the 
large crime levels in past decades cannot return now that lead pollution 
is much lower. The results are not a signal that lead abatement is 
fruitless. As outlined in section 2, the evidence of harmful biological and 
health changes due to lead is overwhelming. There is no known safe 
level of lead. Even if outcomes higher up the causal chain, such as crime, 
are not as affected by lead, the evidence still shows lead abatement will 
increase health outcomes, especially for the very young. 

For future research, we have two main suggestions. The first is that 
there are enough low sample size, correlational studies in the lead-crime 
literature. What is needed now is high power, high-quality causal esti-
mates of the effect of lead on crime. The value added of such studies 
would be increased by testing the effect on different types of crime, and 
the possible interaction of lead with other potential causes. The second is 
that more high-quality causal estimates of the elasticity of other causes 
of crime are needed. Our results suggest lead is not responsible for the 
majority of the fall in crime since the 80s and therefore leaves open room 
for other explanations. These explanations must account for the fact 
homicide has fallen across many (but not all!) western countries at 
roughly the same time. They must also account for the fact that total 
crime has risen in Europe and fallen in the US, while the homicide rate 
has fallen in both. Further comparison of the relative shares of re-
sponsibility for the fall in crime, as well as the interaction between 
causes, may also be fruitful and we suggest further meta-analyses, using 
modern methods, would be helpful in this area. 
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