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Many important policy decisions concerning policing hinge on our un-
derstanding of how likely various criminal offenses are to result in arrests.
Since many crimes are never reported to law enforcement, estimates based
on police records alone must be adjusted to account for the likelihood that
each crime would have been reported to the police. In this paper, we present
a methodological framework for estimating the likelihood of arrest from po-
lice data that incorporates estimates of crime reporting rates computed from
a victimization survey. We propose a parametric regression-based two-step
estimator that (i) estimates the likelihood of crime reporting using logistic
regression with survey weights; and then (ii) applies a second regression step
to model the likelihood of arrest. Our empirical analysis focuses on racial
disparities in arrests for violent crimes (sex offenses, robbery, aggravated
and simple assaults) from 2006–2015 police records from the National In-
cident Based Reporting System (NIBRS), with estimates of crime reporting
obtained using 2003–2020 data from the National Crime Victimization Sur-
vey (NCVS). We find that, after adjusting for unreported crimes, the likeli-
hood of arrest computed from police records decreases significantly. We also
find that, while incidents with white offenders on average result in arrests
more often than those with black offenders, the disparities tend to be small
after accounting for crime characteristics and unreported crimes.

1. Introduction. Characterizing the likelihood that a criminal offense will result in an
arrest is central to multiple lines of criminological research, including crime control, deter-
rence, and racial disparities (Nagin, 2013; Piquero and Brame, 2008). Analyses of arrests
traditionally rely on data collected by law enforcement agencies. The offenses captured by
these records, however, represent only a fraction of all crimes that occur. By neglecting the
“dark figure of crime” (Skogan, 1974), these analyses inevitably overestimate the underly-
ing arrest rate per crime committed. The overestimation can potentially be severe, as data of
criminal victimization reveal that less than half of violent offenses in the US ever become
known to law enforcement (Morgan and Truman, 2021).

In order to estimate the likelihood of arrest for all crimes that are committed, police records
can be augmented with data on crime reporting from victimization surveys. In the US, the
National Crime Victimization Survey (NCVS) collects information on whether respondents
experienced a victimization, and whether police were made aware of the offense. The idea
of combining victimization data with police records was first proposed by Blumstein and
Cohen (1979), who estimated arrest rates for violent offenses in Washington D.C. in the
1970s. However, owing to the limited data available, their approach could not account for
variations in crime reporting rates across offense characteristics.

*Riccardo Fogliato worked on this project during his time at Carnegie Mellon University.
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FIG 1. Summary of the proposed methodology. On the left, a victimization with characteristics Zv is reported
to law enforcement (Rv = 1) with probability πv(Zv). NCVS data capture both reported and unreported vic-
timizations. On the right, an offense with characteristics (Z,X) is reported to the police (R = 1) with some
positive probability π(Z). X captures all of the information that is contained in Z , i.e., the distribution of Z|X
is degenerate. Only reported offenses (R = 1) appear in NIBRS data. A reported crime can result in an arrest
(A = 1) with probability α(X). The target of interest in our work is the conditional probability q(X) that an
offense will result in an arrest. Although the estimation of π (and consequently of q) cannot be pursued solely on
police records, assuming that πv(z) = π(z) for all z’s on the support Z of Z allows for the estimation of the
likelihood of police notification on these data. The rigorous description of this setup is detailed in Section 4.

The increasing granularity and availability of incident-level crime data released by police
agencies through the National Incident Based Reporting System (NIBRS) offers an oppor-
tunity to improve this analysis by accounting for crime characteristics. Combined with the
information collected through the NCVS, NIBRS records can yield more accurate estimates
of arrest rates per crime committed. Unfortunately, it is not possible to link records in NCVS
and NIBRS directly. In this paper, we propose statistical methods to estimate the likelihood of
arrest on incident-level data from police records while accounting for each crime’s likelihood
of police notification, computed from victimization survey data. The proposed methodology
consists of two simple steps (Figure 1). We first estimate the likelihood of police notification
conditional on offense characteristics via logistic regression with survey weights on victim-
ization data. Then, we derive estimators of the total number of offenses, the rate of police
notification, and the rate of arrest that leverage the characteristics of crimes in police records
and the likelihood that the crime would be reported. The likelihood of arrest conditional on
crime characteristics is modeled using logistic regression, and the coefficient estimates are
obtained through a two-step estimation approach which accounts for the rates of crime re-
porting. When fitting logistic regression on crimes with multiple offenders, we handle the
data dependence using generalized estimating equations (GEEs) (Liang and Zeger, 1986).
We show that the proposed estimators are consistent and asymptotically normal for the tar-
get parameters, under a series of assumptions. Although our analytical results rely on the
assumption that the models are correctly specified, the model results can be interpreted if this
assumption does not hold in practice (Buja et al., 2019a,b; Berk et al., 2019). Although we fo-
cus on logistic regression, the proposed framework can be used to show asymptotic normality
of any parametric regression model using an analysis similar to the one we conduct.

Our empirical investigation focuses on the assessment of differences in the likelihood of
arrest across racial groups on 2006–2015 NIBRS data, with estimates of crime reporting ob-
tained from NCVS data. We focus on violent crimes (sex offenses, robbery, aggravated and
simple assaults) because the race of the offender is observed by the victim in the majority
of such incidents. By contrast, many property crimes occur without the victim present, and
so there is often no opportunity for them to directly observe offender characteristics. Our
analysis reveals that on average about one in two violent offenses becomes known to law en-
forcement and one in five eventually results in arrest. Since the likelihood of crime reporting
and of arrest vary with crime characteristics, arrestees do not form a representative sample of
all offenders.
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In terms of racial disparities, we find that crimes involving black offenders are reported
at (marginally) higher rates than those involving white offenders, yet they result in arrests
less often. Once crime characteristics are accounted for, the estimated differences in arrests
across racial groups tend to be small. We further validate our results through an additional
analysis where we employ nonparametric models instead of logistic regression to estimate
the likelihood of police notification on survey data. Throughout the discussion one should
keep in mind that our empirical findings rely on multiple data-related assumptions, which
may not hold true (see limitations in Section 7).

The rest of the paper is organized as follows: Section 2 contains related work. Section 3
describes the data sources and related data processing. Section 4 contains the methodological
framework. Section 5 includes the empirical analysis and in Section 6 we present the results
of our study. Limitations of our analysis and future work are discussed in Sections 7 and 8
respectively.

2. Related work. The methodology developed in our work is related to the literature on
missing data problems (being a case of missingness not at random) (Kang and Schafer, 2007;
Little and Rubin, 2019) and on capture-recapture (Petersen, 1896; Lee and Chao, 1994). In
both lines of work, the target of key interest is the expected value of a random variable that
is only partially observed. Works in this area mainly employ inverse probability weighting
methods, e.g., using the Horvitz-Thompson and Hájek estimators (Horvitz and Thompson,
1952; Basu, 2011). In this work, we use the latter estimator to compute the share of unre-
ported crimes and arrest rates from police records. The inclusion probabilities correspond to
the estimated likelihood of police notification obtained via logistic regression. This approach
can be thought of as a special case of the capture-recapture setting studied in Huggins (1989)
when there is only one occasion to recapture. Similar results in the capture-recapture setting
are also obtained by Van Der Heijden et al. (2003) and Böhning and Van Der Heijden (2009).
However, these works impose distributional assumptions to handle data dependence. Instead,
following prior empirical analyses of NIBRS (D’Alessio and Stolzenberg, 2003; Fogliato
et al., 2021), we assume independence of the observations. A popular procedure used to fit
models in presence of sampling bias is the two-step approach proposed by Heckman (1979).
This approach most commonly applies probit regression in the first stage and OLS in the
second stage. Our approach instead uses logistic regression in both steps and relies on a dif-
ferent set of assumptions. The design and derivation of our estimation procedure also draws
from the literature on survey sampling (Särndal, Swensson and Wretman, 2003) and two-step
M-estimation (Newey and McFadden, 1994). The regression analysis of arrests for crimes
involving multiple offenders (hence with associated outcomes) via GEEs is inspired by the
methods developed in the epidemiological literature (Hubbard et al., 2010). Lastly, our analy-
sis operates under the assumption of covariate shift, i.e., that the distribution of the regressors
but not of the outcome may vary between train and test sets (Sugiyama, Krauledat and Müller,
2007). In our setting, regressors and outcomes are represented by victimization and offense
characteristics and by whether the crime has been reported respectively, while train and test
set correspond to NCVS and NIBRS data respectively. Differently from these works, how-
ever, we assume that the posited regression models for the likelihood of crime reporting are
well-specified and consequently no adjustments of the loss, such as by reweighting (Byrd and
Lipton, 2019), are required.

Our work contributes to the literature on crime control. Estimates of the dark figure of
crime and arrest rates for violent offenses have traditionally been obtained either from cross-
sectional data and from self-reports of offending behavior, or solely from victimization data.
Unlike our study, these analyses generally focus on arrest rates per individual rather than per
crime committed. The approach taken by the studies in the first line of work was pioneered
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by Blumstein and Cohen (1979), and is in spirit similar to ours. They compute arrest rates
as the ratio of the arrest rates measured on police records and of the crime reporting rates
on victimization surveys (Blumstein et al., 1986; Blumstein and Cohen, 1987). These studies
suffer from one major drawback: As we mentioned in the Introduction, by using aggregate
data from police agencies, they cannot account for variations in the likelihood of police noti-
fication across crime types, as Blumstein et al. (1986, page 335) also noted. This is relevant
to our analysis especially because NIBRS and NCVS may capture populations of offenses
with different characteristics, as not all police agencies have adopted NIBRS yet. Our pro-
posed methodology addresses this issue. Within the second line of work, Blumstein et al.
(2010) estimate arrest rates for violent crimes on the Rand Second Inmate Survey, a survey
of inmates in three US jails conducted in the 1970s. Their estimates of arrest rates are close
to ours. In the same study, the authors also assess arrest rates across racial groups and find
no evidence of disparities. Two analyses focused on data from the Pathways to Desistance
study, a longitudinal investigation of serious juvenile offenders from adolescence to young
adulthood (Piquero and Brame, 2008; Brame et al., 2004), similarly do not find racial dis-
parities in arrests. The seeming contrast with our results may be explained by the different
nature of the populations of offenders we focus on, or by temporal differences. Within the
third and last line of work, Buil-Gil, Medina and Shlomo (2021) estimate how the dark figure
of crime varies with crime and neighborhood characteristics on victimization survey data in
the UK. They conclude that this figure is associated with the socioeconomic status of the par-
ties involved. Although our analysis does not account for these specific characteristics, our
results similarly reveal that the likelihood of crime reporting varies with the demographics
of the victim and of the offender. Multiple studies have examined racial disparities in po-
lice notification and arrests for violent offenses known to law enforcement. There is evidence
that, overall, incidents with black offenders are at least as likely as those with white offenders
to be reported to law enforcement (Morgan et al., 2017; Beck and Blumstein, 2018). After
accounting for contextual factors, incidents are generally more likely to be reported when
one of the parties involved is black (Avakame, Fyfe and McCoy, 1999; Xie and Lauritsen,
2012; Baumer and Lauritsen, 2010; Bachman, 1998; Fisher et al., 2003), although there ex-
ist both conflicting and null findings (Baumer, 2002; Dugan, 2003). In our analysis, we find
that incidents with black offenders are reported at slightly higher rates than those with white
offenders, even conditional on crime characteristics.

There is also mixed evidence concerning the magnitude of differences in arrests across
racial groups for crimes known to law enforcement. While some works have concluded that
crimes are more likely to result in arrest when the offender is black (Kochel, Wilson and
Mastrofski, 2011; Lytle, 2014), multiple analyses focused on violent offenses on NIBRS data
have reached a different conclusion (D’Alessio and Stolzenberg, 2003; Pope and Snyder,
2003; Roberts and Lyons, 2009). These works have found that, even after accounting for
crime characteristics, black offenders are less likely to be arrested than white offenders for
assault and robbery. Differences for rape and homicide were found to be negligible. In our
analysis, we find that accounting for unreported crimes reduces the estimated gap in arrest
rates for robbery, and the estimated gaps for assaults are close to zero. While most studies
have focused on the analysis of incidents with single offenders and victims, Lantz and Wenger
(2019) analyze incidents involving violent offenses where white and black individuals offend
together. They fit one single regression model and they conclude that white offenders are
less likely to be arrested than black offenders. We instead focus on all crimes with multiple
offenders, fit separate models for each crime type, and find that the likelihood of arrest is
mostly similar across racial groups of offenders. The only exception is robbery, for which
arrest appears to be more likely for crimes involving white offenders, regardless of whether
unreported crimes are accounted for. Lastly, we note that the results in the literature are likely
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susceptible to issues stemming from model misspecification. For instance, Fogliato et al.
(2021) showed that model misspecification can impact the magnitude and even the direction
of the estimated racial disparities. In this work, we reach analogous conclusions: Our model
estimates vary depending on the subsets of crimes considered in the analysis.

3. Data. Our empirical analysis leverages data from the National Crime Victimization
Survey (NCVS) and the National Incident Based Reporting System (NIBRS). Similarly to
past studies on NIBRS (D’Alessio and Stolzenberg, 2003; Fogliato et al., 2021), the main
analysis in the paper centers on incidents with one victim and one offender. The data process-
ing to obtain the dataset of crimes involving multiple offenders requires stronger assumptions.
This is because NCVS only allows for inference at the level of the incident, while NIBRS
contains also offender-level data. We now describe each of the two data sources and related
data processing in turn. In this step of the analysis, we wish to identify a set of incidents
captured by NCVS and NIBRS that share similar characteristics to ensure that the covariate
shift assumption underpinning our analysis plausibly holds.

3.1. Data on criminal victimization. The NCVS represents the primary source of infor-
mation on victimization in the US (Barnett-Ryan, Langton and Planty, 2014). By collecting
information on the magnitude and extent of criminal victimization from a nationally repre-
sentative sample of households, it is designed to complement data from police agencies with
an alternative measurement of crime. Survey respondents aged 12 or older are interviewed re-
garding the criminal victimizations that they experience for nonfatal personal crimes (United
States Department of Justice, 2017a). Our analysis focuses on data from interviews conducted
between 2003 and 2020, which we obtain from the repository of the Inter-university Consor-
tium for Political and Social Research (ICPSR) (United States Department of Justice, 2021).
The data contain information on the stratified, multi-stage cluster sampling design, namely
(pseudo-)strata, primary sampling units (PSUs), and observations (incidents) weights for se-
rious crimes.1 Information about the sampling design and on the construction of the sampling
weights can be found in United States Department of Justice (2017a).

In the data, we consider only victimizations that satisfy the following criteria. (i) Incidents
need to include an offense of simple assault (excluding verbal threats of assault), aggravated
assault, robbery, or rape/sexual assault, which we will refer to as “sex offenses” in the rest
of the paper.2 (ii) We keep only incidents that have occurred within the United States. (iii)
Since the NCVS collects information (e.g., demographics) only about the respondent, we
drop incidents involving more than one victim. (iv) We consider only incidents with black or
white individuals, with the inclusion of Hispanics.3 In case of incidents involving multiple

1Similarly to past studies on NCVS (Xie and Lauritsen, 2012; Xie and Baumer, 2019a), our analysis assumes that
nonresponse bias is accounted for by the use of survey weights. We acknowledge that in practice this assumption
may not hold true.

2The Bureau of Justice Statistics (BJS) conflates simple assault with verbal threats of assault in their annual
reports. In NIBRS, however, only physical attacks are coded as simple assaults (c.f. page 18 in United States
Department of Justice (2019)). In order to align the definitions of simple assaults in NIBRS and NCVS, these
crimes are excluded from the analysis. Consequently, statistics based on our proposed taxonomy, which has been
chosen to ensure the maximal overlap of offense types between NCVS and NIBRS, will not match those in the
reports produced in the BJS reports.

3The ethnicity information for victim and offender has been available in NCVS data since 2003 and 2012 respec-
tively. However, the exclusion of Hispanics from NIBRS data is rather challenging because not all agencies report
the offender ethnicity information, which was introduced in 2013. One could potentially attempt to identify the
law enforcement agencies that generally report such information and consider only data from those agencies,
as Roberts and Lyons (2011) have done. That procedure, however, would introduce a geographical bias in our
NIBRS sample and thus we do not adopt such an approach.



6

offenders, we consider only those in which at least one of the offenders belongs to these racial
groups. Our final dataset of incidents with single offenders consists of 11145 observations
which, when reweighted by the survey weights, correspond to about 40 million crimes. The
most frequent types of offense is simple assault (54%, based on survey weights), followed
by aggravated assault (24%). Robbery and sex offense are the least frequent types of crime
and each of them comprises about 10% of the available observations. The dataset of incidents
with one or more offenders comprises 3405 additional observations and in total it corresponds
to about 50 million incidents.

The outcome of interest in NCVS is whether the police are aware of the incident, as re-
ported by the NCVS respondent in the survey (R ∈ {0,1}). We consider the likelihood of
an incident being reported πv(Zv) to depend on a set of factors Zv which include character-
istics of the parties involved and contextual factors. In terms of demographics, we account
for the age, sex, and race of both victim and offenders. In the analysis of multiple offend-
ers, we consider the sex of the majority of the offenders, and the age of the youngest and of
the oldest offenders. We also consider the relationship between victim and offenders (e.g.,
if they are relatives), whether the victim suffers from a serious or minor injury, and whether
the offenders have a firearm or a different weapon. We include two variables corresponding
to whether the incident happens during the day and whether it occurs in a public area. To
account for geographical variations in the likelihood of police notification, we account for
whether the incident took place in a metropolitan statistical area (MSA), the corresponding
US Census region in which the incident took place, and the year of the interview. Lastly, we
consider whether the offense has been only attempted, the type of crime, and, in case of sex
offenses, whether the offense consists of either rape or sexual assault. All variables other than
the victim’s age and the year are categorical.

3.2. Crime data from law enforcement agencies. NIBRS is part of the Federal Bureau
of Investigation’s Uniform Crime Reporting (UCR) data collection program. Through this
program, law enforcement agencies submit detailed data on the characteristics of incidents
that are known to them, including information on victims and offenders, and on the nature of
the offenses. Our analysis builds on the assumption that when a crime becomes known to law
enforcement, it will be recorded in the data released by law enforcement. Our analysis relies
on 2006–2015 NIBRS data obtained from the ICPSR repository (United States Department of
Justice, 2008a, 2009a, 2010a, 2011a, 2012a, 2013a, 2014a, 2015a, 2016a, 2017b). Note that
while we rely on NCVS data from the period 2003-2020, the NIBRS data spans a shorter
time period.

For this analysis, we identify incidents with characteristics that are similar to those in-
cluded in our NCVS dataset. Thus, we apply the following data restrictions. (i) We consider
incidents involving crimes of rape and sexual assault (i.e., sex offenses)4, robbery, aggra-
vated assault, and simple assault. The majority of the incidents (about 99% of cases) contain
only one of these offenses. In the analysis of incidents with multiple offenders, we similarly
found that in almost all of the incidents the offenders were charged with the same offense.
Thus we can reasonably make the simplifying assumption that all offenders involved in the
same crime incident commit the same offense. (ii) We keep only data from the 16 states
that reported most of their crime data through the NIBRS in this time period. These states
are Arkansas, Colorado, Delaware, Idaho, Iowa, Kentucky, Michigan, Montana, New Hamp-
shire, North Dakota, South Carolina, South Dakota, Tennessee, Vermont, Virginia, and West

4In the category of rape and sexual assault we include crimes of forcible rape, forcible sodomy, sexual assault
with an object, and forcible fondling. We do not consider statutory rape and incest because such offenses are
unlikely to be reported by NCVS respondents in the interviews. The definition of rape in the UCR was revised
in 2013 to also include male victims and female offenders.



ESTIMATING ARRESTS FROM POLICE RECORDS WITH UNREPORTED CRIMES 7

Virginia. This exclusion makes our sample representative of a population that is well defined,
i.e., the crimes that have become known to police and reported by agencies in the 16 states
considered. (iii) We drop incidents that involve more than one victim and, for the analysis of
incidents with single offenders, we also drop those that involve more than one offender. (iv)
We account only for incidents where the races of victims and offenders are either black or
white, including Hispanics. We observe that, based on the data of ethnicity that are available,
about 90% of the offenders of Hispanic origin present in our sample are classified as whites.
(v) We drop incidents that are cleared by exceptional means due to the death of the offenders
or because the offender is in the custody of another jurisdiction.5 We consider the remaining
incidents that are cleared by exceptional means, namely those for which a juvenile offender
was not taken into custody, prosecution was declined, or the victim refused to cooperate, as
having no arrest. (vi) Lastly, to align our sample with the population of NCVS respondents,
we drop incidents with victims aged 11 or younger. Our final samples of offenses involv-
ing only individual and one or more offenders consist of approximately 3.3 million and 4.9
million offenses respectively. As in the NCVS data, most of the offenses are simple assault
(about 70%) and aggravated assault (about 17%).

The outcome of interest in our analysis is whether the incident results in the arrest of
the offender (denoted A ∈ {0,1}). In order to estimate the likelihood that a crime becomes
known to the police for each incident in this dataset, π(Z), we process the features in the
data to obtain a set of crimes characteristics Z that is analogous to those captured in our
final NCVS dataset (Zv). NIBRS also contains additional information that can be used in
estimating the likelihood of arrest. In our application, we estimate the likelihood of the crime
resulting in the offender’s arrest, q(X), based on crimes characteristics, X . In our analysis of
incidents with individual offenders, X includes not only all the variables that are present in
Z , but also information about the state where the crime occurred, the size of the police force
in the agency, and the number of police officers per capita. This additional police agency data
is obtained from police employee datasets downloaded from ICPSR (United States Depart-
ment of Justice, 2008b, 2009b, 2010b, 2011b, 2012b, 2013b, 2014b, 2015b, 2016b, 2017c).
In the analysis of incidents with multiple offenders, Z captures aggregate information about
the incident, e.g., the age of the youngest offender. X contains variables measured both at the
level of the incident and of the individual offender, e.g., the age of the individual offender.

Algorithm 1 Estimation strategy on NCVS and NIBRS
γ̂← solve

∑Nv

i=1wiIih
v(Rvi ,Z

v
i ;γ) = 0 ▷ Likelihood of police notification πv(Zv ;γ) on NCVS data

N̂ ←
∑N
i=1Ri/π(Zi; γ̂) ▷ Total number of offenses N on NIBRS data

π̂∗←
∑N
i=1Ri/N̂ , q̂∗←

∑N
i=1Ai/N̂ ▷ Rate of police notification π∗ and arrest q∗ on NIBRS data

θ̂← solve
∑N
i=1Rih(Ai,Zi,Xi;θ, γ̂) = 0 ▷ Likelihood of arrest q(X;θ) on NIBRS data

4. Methods. In this section, we present the statistical methodology behind our em-
pirical analysis. Algorithm 1 describes the proposed estimation approach. We first esti-
mate πv(Zv;γ), the likelihood of police notification conditional on crime characteristics via
survey-weighted logistic regression. We then introduce the offense data setup and describe
the assumptions underpinning our inference strategy. Next, we review estimators of NIBRS
summary statistics, namely the total number of offenses N , the rate of police notification π∗,

5The excluded incidents represent less than 1% of all offenses, so their inclusion is unlikely to change the conclu-
sions of our analysis. In addition, there are not large differences in clearance by exceptional means across racial
groups; see the results in Section A of the Appendix in Fogliato et al. (2021).
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and the arrest rate for all crimes committed q∗. Lastly, we estimate q(X;θ), the likelihood of
arrest conditional on crime characteristics via logistic regression on NIBRS data. Under reg-
ularity conditions, all of the estimators that we present are asymptotically normal. Detailed
derivations and proofs of the results are deferred to the Appendix.

4.1. Crime reporting on NCVS. Consider the finite population of criminal victimiza-
tions in the US, denoted by V Nv

= {(Zvi ,Rvi )}N
v

i=1. This can be viewed as an i.i.d. sample
(Zv,Rv)∼ P v , where Zv = (Z(1), . . . ,Z(dz)) ∈ Z indicates the victimization’s character-
istics and Rv ∈ {0,1} is the indicator of whether the victimization becomes known to law
enforcement. We have access to the NCVS survey sample of size nv , which is drawn from
V Nv

under some probability sampling design ψ. Let the random variable Ii = 1 if ith ob-
servation is included in this sample, and Ii = 0 otherwise. The sample has an associated set
of sampling weights {wi : 1≤ i≤Nv, Ii = 1}, which are commonly thought as representing
the number of units that each sampled observation represents in the larger finite population
(Lohr, 2007).

We model the conditional probability of police notification, πv(Zv), via logistic regres-
sion. That is, we take πv(z;γ) := 1/(1 + e−γ

T z) to describe PP v(Rv = 1|Z = z), for
γ ∈ Γ for some compact set Γ ⊂ Rdz . The superpopulation target parameter γ0 ∈ Int(Γ)
is defined by the moment condition EP v [hv(Rv,Zv;γ)] = 0 where hv(Rv,Zv;γ) := (Rv −
πv(Zv;γ))Zv . The design-based estimator γ̂ of γ0 is the solution to the estimating equation∑Nv

i=1wiIih
v(Rvi ,Z

v
i ;γ) = 0 (Lumley and Scott, 2017). Under certain regularity conditions,

(Σv)−1/2
√
nv(γ̂ − γ0)

d→N (0, Idz) where Σv is a positive definite matrix.

4.2. NIBRS setup. Let ON = {(Xi,Zi,Ri,Ai)}Ni=1 denote the sample of all offenses
committed, which is assumed to be an i.i.d. sample of (X,Z,R,A) ∼ P . In this part of the
analysis, we consider crimes with only one offender, so the independence assumption is likely
to hold (but see the longer discussion in Section 7). Let X = (X(1), . . . ,X(dx)) ∈ X and
Z = (Z(1), . . . ,Z(dz)) ∈ Z indicate incident characteristics. Let R ∈ {0,1} and A ∈ {0,1}
indicate whether the offense is known to the police (R = 1) and whether it results in an
arrest (A = 1) respectively. Given that an offense can result in an arrest only if it is known
to the police, we assume that R = 0 implies A = 0. Note that police-recorded data contain
only offenses that have been reported, i.e., those for which R = 1. We denote with E the
expectation over P .

In order to estimate parameters of interest on the entire population using solely the obser-
vations for which R= 1, we will make use of the following set of assumptions.

A.1 ∀z ∈Z , πv(z;γ0) = PP v(Rv = 1|Zv = z) for γ0 ∈ Γ where Γ is a compact set.
A.2 ∀(x, z) ∈ X ×Z , P(R= 1|X = x,Z = z) = P(R= 1|Z = z).
A.3 ∀z ∈Z , P(R= 1|Z = z) = PP v(Rv = 1|Zv = z).
A.4 ∥X∥∞ <M and ∥Z∥∞ <M for some M > 0.

A.1 states that the parametric model πv(z;γ0) is correctly specified for PP v(Rv = 1|Zv = z).
We empirically assess this assumption by comparing the logistic regression model with a
nonparametric approach, and find small differences in the estimates produced by the two
methods for three of the four offense types considered. A.2 states that R is independent
of X after conditioning on Z . In our empirical analysis, we study the likelihood of arrest
per crime committed, q, as a function of only X (see 4.4) because X contains at least as
much information as Z . In other words, X includes more refined details about the incident
such as specific geographical information and characteristics about each of the offenders
within an incident (hence the distribution of Z|X is degenerate). These characteristics are
available in NIBRS but not in NCVS. However, through A.2 we assume that this additional
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information is not relevant to the estimation of the distribution of R|Z . A.2 may be violated
if Z did not capture, for instance, variations in reporting rates across police agencies, but X
did. A.3 allows us to compare the probability of police notification in NIBRS and NCVS.
This assumption casts our learning problem into the covariate shift setting. Together, A.1 and
A.3 imply that πv(z;γ0) = P(R = 1|Z = z). Thus, in what follows we drop “v” from the
superscript of π(Z;γ0). A.4 ensures that functions of these random variables will have finite
moments. This assumption clearly holds true in our application. Lastly, A.1 and A.4 imply
that π(z;γ) > (1 + e

√
dM supγ∈Γ∥γ∥)−1 > 0 for all z ∈ Z and γ ∈ Γ, an assumption that is

known as positivity in the causal inference literature (Little and Rubin, 2019). In our setting,
it rules out the possibility that there exist offenses with certain characteristics that will never
be reported to the police. Under conditions A.1–A.4, we can establish the consistency of the
estimators we propose in the next section. By imposing additional assumptions on the rate of
growth of nv , Nv , and N , we can derive their asymptotic distributions as well.6

4.3. Crime reporting and arrest rates on NIBRS. There are three targets of key in-
terest on NIBRS. First, the total number of offenses, which can be estimated using the
Horvitz-Thompson estimator N̂ :=

∑N
i=1Ri/π(Zi; γ̂). Second, the expected rate of police

notification π∗ := E[R]. Third, the arrest rate q∗ := E[A]. These rates are estimated by
π̂∗ :=

∑N
i=1Ri/N̂ and q̂∗ :=

∑N
i=1Ai/N̂ respectively. Under the assumption that γ̂ is con-

sistent for γ0 and asymptotically normal, as well as some regularity conditions, these estima-
tors are asymptotically normal. The critical step in the derivation of the limiting distributions
is to leverage the fact that E[R/π(Z;γ0)] = 1 in order to rewrite the unconditional expecta-
tions with respect to the event {R= 1}. This make possible the estimation based only on the
sample we have access to.

4.4. Conditional probability of arrest on NIBRS via logistic regression. We model the
probability of arrest conditional on the covariates E[A|X] using logistic regression; i.e., we
consider q(x;θ) := 1/(1 + e−θ

Tx) where θ ∈ Θ for a compact set Θ ⊂ Rdx . The parameter
θ0 ∈ Int(Θ) is defined by the following moment condition

E [(A− q(X;θ))X] = 0.(1)

Since A= 0 whenever R= 0, it follows that E[AX] = E[RAX]. Then, under Assumptions
A.1–A.3, the moment condition (1) can be rewritten as

G(θ, γ0) := E
[(
A− q(X;θ)

π(Z;γ0)

)
XR

]
= 0.

Thus, in practice, we compute the estimator θ̂ of θ0 by solving the following estimating
equation

ĜN (θ, γ̂) :=
1

N

N∑
i=1

Rih(Ai,Zi,Xi;θ, γ̂) = 0,(2)

where h(Ai,Zi,Xi;θ, γ) := [Ai − q(Xi;θ)/π(Zi;γ)]Xi. The estimate θ̂ of θ0 can be found
using iteratively (re-)weighted least squares. Under Assumptions A.1–A.4, together with the
consistency and asymptotic normality of γ̂ as an estimator of γ0, then Σ−1/2√n(θ̂ − θ0)

d→
N (0, Idx) as n→∞ where Σ is positive definite.

6Note that no assumption on n := E[R] is needed here because, unlike the survey sampling setting, the
i.i.d. assumption on the data of offenses guarantees that n and N will grow at the same rate. Since the sam-
ple sizes of the NCVS and NIBRS samples are of comparable magnitude, we assume that limn,nv→∞ n/nv =
κ=O(1). The results readily generalize to the cases where n≪ nv or n≫ nv .
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4.5. Conditional probability of arrest on NIBRS via GEEs. In the previous sections we
considered only crimes with a single offender. We now consider estimating the conditional
probability of arrest from police records on crimes where one or more offenders are in-
volved. When multiple offenders act together, the i.i.d. assumption on ON clearly doesn’t
hold. We denote the sample of crime incidents, where each incident represents a clus-
ter containing observations corresponding to the individual offenders, occurring in the US
with ON = {(Ki,Xi,Zi,Ri,Ai)}Ni=1, which is an i.i.d. sample of (K,X,Z,R,A)∼ P with
K ∈ Z+. Here Xi is a matrix of dimension Ki × dx whose kth column corresponds to Xik,
the characteristics relative to the offense committed by the kth offender in the ith incident.
The vector Ai = (Ai1, . . . ,AiKi

)T indicates whether each of the offenders in the ith incident
are arrested (Aij = 1 for 1≤ j ≤Ki) or not. Ri indicates whether the ith incident is known
to the police, and Zi represents characteristics of the same incident. Note that Zi contains
information that is shared across all offenders within the same incident (e.g., location), while
Xi may also include covariates that are specific to the individual offender (e.g., demographics
of that offender).

Despite the likely positive correlation across outcomes within the same incident, the logis-
tic regression coefficient estimates discussed in the previous section remain consistent for the
target parameters. However, the estimates of their asymptotic variance need to be adjusted
(Fitzmaurice, Laird and Rotnitzky, 1993). To account for the correlation in the variance esti-
mation and to increase efficiency, we employ generalized estimating equations (GEEs) (Liang
and Zeger, 1986). We assume that

A.5 E[Aij |Xi] = q(Xij ;θ0) where q(Xij ;θ0) := (1 + e−θ
T
0 Xij )−1 for 1 ≤ i ≤ N , 1 ≤ j ≤

Ki, θ0 ∈ Int(Θ).

According to this assumption, the probability of arrest for an individual does not depend on
incident’s characteristics related to their co-offenders; see Fitzmaurice et al. (2008, Section
3.2) for a longer discussion of this assumption. To model the covariance across outcomes,
we define the matrix Wi(θ,α) :=W (Xi,Zi;θ,α) =Di(θ)

1/2Ci(α)Di(θ)
1/2 for 1≤ i≤N ,

where Di(θ) is a diagonal matrix of dimension Ki ×Ki whose kth diagonal entry corre-
sponds to q(Xik;θ)(1 − q(Xik;θ)). Ci(α) is the so-called “exchangeable working corre-
lation” matrix, which has dimension Ki ×Ki with 1 on the diagonal and any α ∈ [−1,1]
elsewhere (Liang and Zeger, 1986).

The estimator θ̂ ∈ Int(Θ) solves the following generalized estimating equation

1

N

N∑
i=1

RihGEE(Xi,Zi,Ai;θ, α̂) :=
1

N

N∑
i=1

RiXiDi(θ)Wi(θ, α̂)
−1

(
Ai −

qi(θ)

π(Zi; γ̂)

)
= 0,

where qi(θ) = (q(Xi1;θ), . . . , q(XiKi
;θ))T and α̂ is a consistent estimator of α0, the true

correlation parameter, given θ. Then, under certain certain conditions, Σ−1/2
GEE

√
n(θ̂− θ0)

d→
N (0, Idx) as N →∞ where ΣGEE is a positive definite matrix.
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FIG 2. Area under the curve (AUC) and calibration for the logistic regression model with survey weights that
estimates the likelihood of police notification πv(Zv) on 2003–2020 NCVS data, obtained via cross-validation
for the four types of crimes considered. Error bars and shaded regions indicate 95% confidence intervals for the
mean.

5. Empirical strategy. Our empirical analysis leverages the analytical framework pre-
sented in Section 4. The code used for data processing and the analysis is available at
github.com/ricfog/arrests-with-unreported-crimes.

5.1. Missing data. Both NCVS and NIBRS data contain a small share of missing values
in certain crime characteristics. In NCVS data, a handful of the other variables are missing in
less than 5% of the cases. The only exceptions are the MSA information and offender’s age in
crimes of robbery, which are missing in about one fourth of the observations. In NIBRS data,
a few of the variables are missing for less than 5% of the observations. Past work on NCVS
and NIBRS has assumed the data to be either missing completely at random (MCAR) or
missing at random (MAR) (D’Alessio and Stolzenberg, 2003; Xie and Lynch, 2017; Fogliato
et al., 2021). We assume the data to be MAR and impute the missing values via multiple
imputation by chained equations (MICE) using predictive mean matching for numerical data,
and multinomial and logistic regression for categorical data (Azur et al., 2011). We repeat the
same procedure for both crimes involving individual and multiple offenders. It is common
practice to create multiple imputed datasets and then pool the estimates computed from each
(Graham, Olchowski and Gilreath, 2007). However, our preliminary analysis showed that
multiple imputed datasets yielded similar estimates, likely because only a small proportion
of observations have missing values. Due to the considerable computational costs of our
workflow, we decided to use only one imputed dataset. Consequently, in the downstream
inference we will not account for the uncertainty arising from the imputation procedure,
which we anticipate to be negligible.

5.2. Estimation on NCVS. We now detail the key steps for the analysis of incidents with
one offender. An analogous procedure is carried out for incidents with multiple offenders
with similar results, so we omit the details for brevity.

We begin by describing the process for using the 2003–2020 NCVS victimization data to
estimate the likelihood that an offense becomes known to law enforcement π conditionally
on its characteristics. We first split the data into two groups stratifying by outcome and year.
One subset, which comprises one fifth of the data, is used for model selection. The valida-
tion subset, which consists of the rest of the data, is used to estimate the chosen model that
will be employed for inference on NIBRS. In terms of model selection, we evaluate several
regression models that include interactions between the crime types and the other regressors,
which reflect different modeling choices made by past studies (Xie and Lauritsen, 2012; Xie
and Baumer, 2019a; Baumer, 2002). This step is warranted by the diversity of feature sets and

https://github.com/ricfog/arrests-with-unreported-crimes
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model choices adopted in regression analyses by these works. We assess model performance
via model calibration and area under the curve (AUC) separately for each type of offense
using cross-validation. Both evaluations account for survey weights. The predictions appear
to be well calibrated across the various models for all crime types considered other than sex
offenses. The AUCs produced by the predictions of the various models are similar, and all
are in the range 0.55–0.7 across offense types and models. We proceed with the logistic re-
gression model without interactions between features and crime types, a model that was also
considered in past work on NCVS similar to ours (Xie and Lauritsen, 2012).7

Next, we fit the selected model on the validation set and compute the variance of the co-
efficient estimates using the information on pseudo-strata and pseudo-primary sampling unit
(PSU) information contained in the data. We report the cross-validated AUC and calibration
of this model on this second set of observations in Figure 2. Despite the wide confidence
intervals, the model predictions are well calibrated and the AUCs are above 0.6 across all
four types of offenses.

Simultaneously, we conduct a sensitivity analysis to compare the estimates produced by
the logistic regression with those obtained from a SuperLearner, which represents a more
flexible approach (Van der Laan, Polley and Hubbard, 2007; Polley and Van Der Laan, 2010).
For this purpose, we train a logistic regression model, a logistic Lasso model (Tibshirani,
1996), a multilayer perceptron with one hidden layer, a Naive Bayes classifier, and a random
forest model (Breiman, 2001). We tune the hyperparameters of each of these models sepa-
rately via cross-validation. To account for the survey weights in training, we resample the
observations within each data fold selecting an observation with probability proportional to
the corresponding survey weight. We select the set of hyperparameters that yield the highest
average AUC across the four crime types. On the second subset of the data, we select by
cross-validation the weights that correspond to the convex combination of the predictions
produced by these models achieving the best predictive performance. As we describe in Sec-
tion 6, the estimates of the likelihood of police notification generated by this nonparametric
model are close to those obtained through the logistic regression approach.

5.3. Estimation on NIBRS. In the next stage, we use the results from the weighted lo-
gistic regression analysis on NCVS data. These results help us calculate the likelihood that
the police will be notified about each individual incident in the NIBRS dataset. Particularly
low values of the assessed probabilities would represent a potential violation of the positiv-
ity assumption, which would skew our estimates. Accordingly, we examine the predictions
generated by the two models across crime types. The smallest detected values range between
0.05 for sex offenses to above 0.1 for the other offense types. Thus, the results of our analysis
on NIBRS will not be overly influenced by a few outliers. We first estimate the total number
of crimes N , the rate of police notification π∗, and the arrest rate q∗, along with their corre-
sponding variances. Then, we follow the procedure described in Section 4.4 to estimate the
likelihood of arrest conditional on covariates, q(X;θ0), for incidents with individual offend-
ers via logistic regression.

We additionally perform a number of robustness checks to assess the sensitivity of the
downstream estimates to the modeling assumptions. First, we repeat these analyses using
estimates of the likelihood of police notification obtained using the SuperLearner in place
of the weighted logistic regression. We also investigate whether the logistic regression for
q(X;θ0) may be misspecified (provided that the model for π(Z;γ0) is correct), using “fo-
cal slope” model diagnostics proposed by Buja et al. (2019b). Using these graphical tools,

7We have conducted an additional analysis employing the same model with an interaction between offender’s and
victim’s races. The results from this analysis and those that we report in the paper are similar.
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we analyze how the coefficient estimates (specifically, offender’s race) change when fitting
the regression model on various configurations of the regressor distributions. To implement
the reweighting procedure, we proceed as follows. We first construct a grid of five evenly
spaced values for the numeric features, and use the grid values of {0,1} for the binary fea-
tures. For each regressor separately, we split the observations into groups based on the grid’s
cell center that is closest to each observation’s feature value in absolute distance. For each
feature-grid cell pair, we then obtain 50 estimates of the logistic regression coefficients by
bootstrap resampling 10,000 observations from the given group. We conclude the discussion
by presenting our final analysis of incidents with one or more offenders which employs the
GEEs framework described in Section 4.5.

6. Results. This section is organized as follows. We first empirically demonstrate how
our approach, by virtue of accounting for covariate shift, strictly improves upon prior anal-
yses such as Blumstein and Cohen (1979). Then, we assess racial disparities in the rates of
police notification, and disparities in arrest rates on all crimes and on only those known to
law enforcement. This first part of the analysis focuses on crime incidents with individual
offenders. Next, we present the regression results for the estimation of the likelihood of ar-
rest conditional on crime characteristics via GEEs. When describing results as statistically
significant, we apply a significance level of 0.01.

6.1. The necessity of accounting for covariate shift. In their approach, Blumstein and
Cohen (1979) assume that all incidents in NIBRS are equally likely to be reported to law
enforcement once we condition on the offender’s race and the crime type. Their method
naively estimates the number of actual crimes underlying the reported crimes in NIBRS by
applying the (fixed) ratio of actual crimes to reported crimes in NCVS. However, because
reporting rates may vary according to crime characteristics, and because of potential covariate
shift between NCVS and NIBRS in the distribution of crime characteristics, these estimates
may be significantly biased.

Both phenomena are observed in the data. As previously discussed, covariate shift arises
in part due to the different geographical coverage of NIBRS and NCVS. For example, 35% of
the offenses of simple assault known to law enforcement in 2006–2015 NCVS data occur in
the southern regions of the US, compared to 60% of those in the NIBRS. As another example,
in about 60% of the offenses of aggravated assault recorded in NCVS the offender is known
to the victim. By contrast, this occurs in 85% of the cases in NIBRS data. The coefficient
estimates produced by the logistic regression fitted on NCVS data reveal that the likelihood
of reporting varies across most of the crime characteristics considered by our analysis, often
quite substantially (see the Appendix). Unlike Blumstein and Cohen (1979), we account for
these variations in our analysis.

6.2. Racial disparities in crime reporting. In the available NIBRS data, 59% of all of-
fenders are white. We estimate that the NIBRS data capture 44% (standard error=5%) and
48% (5%) of all violent offenses committed by white and black offenders, respectively.
Equivalently, slightly more than half of the crimes that occur in the jurisdictions covered
by NIBRS are not reported to law enforcement for both racial groups. The lower report-
ing rates for white offenders relative to black offenders indicates a (not statistically signifi-
cant) marginal overrepresentation of black offenders in the data recorded by police agencies
compared to their representation in the larger population of offenders. More specifically, we
estimate that 61% of all crimes that occur are committed by white offenders.

Table 1 shows the breakdown of the rates of police notification by offense types and of-
fenders’ racial groups. Sex offenses are the least likely to be reported to police, with only one
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TABLE 1
Summary Statistics (2006–2015 NIBRS Data): Estimating Unreported Crimes Using the Likelihood

of Police Notification Computed from NCVS Data.

Variable sex offense robbery aggravated assault simple assault
% police notification
• black offenders 21% (19%) 55% (6%) 63% (4%) 47% (5%)
• white offenders 19% (17%) 51% (7%) 60% (4%) 45% (4%)

% arrests (reported crimes)
• black offenders 22% (<1%) 17% (<1%) 40% (<1%) 38% (<1%)
• white offenders 24% (<1%) 33% (<1%) 56% (<1%) 50% (<1%)

% arrests (all crimes)
• black offenders 5% (20%) 9% (3%) 25% (3%) 18% (4%)
• white offenders 5% (19%) 17% (5%) 34% (4%) 22% (4%)

Notes: Standard errors are reported within parentheses. The summary statistics are computed on in-
cidents with only one offender. The likelihood of police notification is estimated on NCVS data via
logistic regression with survey weights using the methodology described in Section 5.

in four incidents being reported compared to one in two for the other crime types. Since these
crimes are unlikely to be reported to law enforcement, the estimates suffer from large vari-
ance. We find that crimes with black offenders are associated with higher rates of reporting
than those with white offenders across all offense types. However, the regression model fitted
on NCVS data reveals that there is only a weak and not statistically significant association
between reporting and the offender’s racial group once other crime characteristics are taken
into account.

It is possible that the logistic regression model fitted on NCVS data is misspecified. Thus,
we conduct an analysis of the reporting rates where the likelihood of police notification is
estimated via the SuperLearner. By comparing the estimates produced by the two models on
NIBRS data, we find that the estimates are close for the crimes of robbery and assaults. The
estimates of arrest rates obtained using the two models are virtually identical for robbery and
assault, even when we condition on the offender’s racial group (the SuperLearner estimates
are within a 2% difference from those in Table 1). For sex offenses, on the other hand, the
logistic regression tends to underestimate the likelihood of reporting compared to the Super-
Learner. This underestimation is quite substantial. The resulting rates of police notification
based on the SuperLearner are larger than those produced by the logistic regression.

6.3. Racial disparities in arrest rates. We now turn to the estimation of arrest rates.
Overall, 49% (standard error<1%) of the offenses known to law enforcement involving white
offenders resulted in arrest, compared to 37% (<1%) of those involving black offenders.
Table 1 reveals that arrest rates are similar across racial groups for sex offenses, while rob-
bery and assault incidents white offenders result in arrest considerably more often than those
with black offenders. Past works on NIBRS have reached qualitatively similar conclusions
(D’Alessio and Stolzenberg, 2003; Lantz and Wenger, 2019). Despite the lower crime report-
ing rates, crimes with white offenders remain more likely to result in arrests than those with
black offenders once unreported crimes are accounted for. Overall, arrest rates for crimes
are 21% (7%) for white offenders and 17% (5%) for black offenders. Table 1 shows that ar-
rest rates are higher for white offenders in case of assaults and robbery, and are comparable
across racial groups in case sex offenses. As in the observed police data, these rates greatly
vary across offense types: Arrests occur in about one in twenty sex offenses and one in five
simple assaults. The sensitivity analysis via the SuperLearner produces quantitatively similar
results except for sex offenses.
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TABLE 2
Regression Results (2006–2015 NIBRS Data): Assessing Racial Differences in Arrest Likelihood for

Single-Offender Incidents, Using 2003–2020 NCVS Data for Police Notification Estimates.

Variable Sex offense Robbery Aggravated assault Simple assault

Intercept 0.05 (0.01)*** 0.48 (0.08)*** 0.46 (0.06)*** 0.20 (0.02)***
Age of offender 1.01 (0.00)*** 1.01 (0.00)*** 1.01 (0.00)*** 1.00 (0.00)
Off. is male 0.99 (0.08) 0.87 (0.05)* 0.89 (0.04)* 0.90 (0.05).
Off. is white 1.00 (0.07) 1.23 (0.06)*** 1.03 (0.05) 1.01 (0.06)
Age of victim 1.00 (0.00) 1.01 (0.00)*** 1.01 (0.00)*** 1.01 (0.00)***
Victim is male 0.84 (0.06)** 0.87 (0.04)** 0.96 (0.04) 0.93 (0.05)
Victim is white 0.83 (0.07)* 1.00 (0.06) 1.05 (0.06) 1.02 (0.07)
Off. is acquaintance 0.87 (0.06)* 1.34 (0.07)*** 0.98 (0.05) 0.67 (0.04)***
Off. is family member 1.20 (0.14) 2.12 (0.19)*** 1.54 (0.12)*** 1.24 (0.12)*
Off. is intimate partner 1.33 (0.13)** 2.30 (0.18)*** 1.92 (0.13)*** 1.58 (0.13)***
Minor injury 1.70 (0.11)*** 1.24 (0.06)*** 1.45 (0.07)*** 1.85 (0.10)***
Serious injury 2.74 (0.28)*** 1.99 (0.12)*** 2.19 (0.14)***
During day 0.90 (0.05). 1.24 (0.05)*** 0.95 (0.04) 0.93 (0.04)
Private location 1.33 (0.10)*** 1.08 (0.05). 1.40 (0.07)*** 1.34 (0.08)***
Firearm present 1.03 (0.16) 0.97 (0.10) 0.99 (0.10)
Other weapon present 0.90 (0.13) 0.94 (0.10) 0.90 (0.08) 0.85 (0.10)
Multiple offenses 1.90 (0.03)*** 1.58 (0.04)*** 1.14 (0.01)*** 1.15 (0.01)***
Offense only attempted 0.86 (0.12) 0.98 (0.09)
MSA, central city 0.68 (0.05)*** 0.89 (0.05). 0.94 (0.05) 0.92 (0.06)
MSA, not central city 0.84 (0.07)* 1.02 (0.06) 1.10 (0.06) 1.02 (0.07)
Nb. of officers per 1000 capita (ORI) 1.00 (0.00)*** 0.99 (0.00)*** 0.99 (0.00)*** 1.00 (0.00)***
Log population served (ORI) 0.96 (0.00)*** 0.83 (0.01)*** 0.88 (0.00)*** 0.91 (0.00)***

Significance codes: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’, p < 0.1 ‘.’.
Notes: The table shows the odds ratios of the logistic regression coefficients for q, the likelihood of arrest that
accounts for unreported crimes. The model is fitted on 2006–2015 NIBRS data and uses the estimates of π
obtained from 2003–2020 NCVS data. Standard errors are reported inside parentheses. Significance codes
correspond to the p-values (p) of Wald tests to assess the statistical significance of the odds ratios. Year- and
state-level fixed effects are included in the regression model but are omitted from the table. “ORI” stands for
“originating agency identifier”, a regressor whose value is specific to that law enforcement agency.

6.4. Racial disparities in the likelihood of arrest accounting for crime characteristics.
We estimate the likelihood of arrest conditional on crimes characteristics via the two-step
logistic regression detailed in Section 4. The resulting odds ratios of the coefficient estimates
are reported in Table 2. In case of robbery offenses, we find that there is a positive and
statistically significant association between whether the offender is white and the likelihood
that the incident results in arrest. Provided that our model is correctly specified, these results
would indicate that white offenders are more likely to be arrested for robbery than black
offenders, ceteris paribus. The estimates of this coefficient for the other types of crimes are
close to zero and not statistically significant. Thus, the estimated disparities disappear once
we account for crime characteristics other than the offender’s race.

One outstanding concern is that our logistic regression model estimated on NCVS data
may not accurately capture the location-specific patterns in crime reporting existing in the
data (e.g., due to omitted variable bias or modeling misspecification). For example, by study-
ing restricted-use NCVS data Baumer (2002) and Xie and Lauritsen (2012) report significant
variations in crime reporting rates across neighborhoods. Although the available data do not
allow us to analyze reporting rates at the level of the individual law enforcement agencies,
we can still assess whether regional patterns are accounted for by employing a flexible mod-
eling approach. Thus, we run the two-step regression analysis using the estimates of the
SuperLearner in place of those from the logistic regression on NCVS. The estimates of the
offender’s race coefficients produced by this approach are close to those presented in Table
2.
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We also analyze how the odds ratios of the offender’s race coefficient estimates vary under
various configurations of the covariates distributions through the focal slope model diag-
nostics described in Section 5. The results of the diagnostics are reported in the Appendix.
We find that both the magnitude and the direction of the coefficients estimates vary with
the characteristics of the crimes. The most notable pattern is the change in the association
between the likelihood of arrest and the offender’s racial group when either only black or
white victims are considered. This suggests an interaction between the two covariates. For
example, in case of assaults we observe that the estimates association between the offender
being white and the likelihood of arrest is close to zero when the victims being considered
are white individuals, but it is large and positive in case of black victims. This suggests that,
ceteris paribus, white offenders may be more likely to be arrested than black offenders only
when they commit interracial crimes. For sex offenses, however, we find that the association
is negative in case of crimes with black victims and close to zero otherwise.

The estimates in Table 2 can be compared with those obtained from a logistic regres-
sion model fitted directly on NIBRS data without accounting for unreported crimes (see the
Appendix). The association between the offender being white and arrests estimated by the
models without adjustments for unreported crimes is stronger (and positive) compared to
the estimates in Table 2 in case of robberies and assaults. We focus on two other examples
of differences between coefficient estimates that stand out. First, the regression model that
accounts for unreported crimes estimates a stronger positive association between the victim
being injured (vs. no injury) and the occurrence of an arrest. This pattern could be explained
by the fact that incidents without injuries are less likely to be reported to law enforcement
(see the Appendix). Second, the logistic regression without adjustments estimates a negative
and strong association between the presence of a firearm (vs. no weapon) and arrests. This
association disappears once unreported crimes are accounted for, again potentially because
incidents with firearms tend to be more likely to be reported.

6.5. Racial disparities in arrests for incidents with multiple offenders. The estimates of
the crime reporting rates for incidents involving more than one offender are similar to those
for crimes with individual offenders in Table 1. However, we find that arrest rates computed
solely on police-recorded data for these incidents are substantially lower in case of aggravated
assaults (by more than 10%), followed by robbery and simple assaults (within a 5% differ-
ence). By contrast, arrest rates for sex offenses with multiple offenders are marginally higher
than those of crimes with individual offenders. Arrest rates shrink proportionally within racial
groups once unreported crimes are taken into account. We continue to observe that white of-
fenders are arrested more often than black offenders across all crime types. The only excep-
tion is robbery for which the reduction is limited to white offenders but it is not large enough
to reverse the sign of the disparity.

We first fit the two-step regression model using GEEs on only incidents with multiple
offenders. The model estimates that, conditionally on other crime characteristics, white of-
fenders face a higher likelihood of arrest than black offenders across all offense types. We
next fit the same model specification on incidents with both single and multiple offenders.
In doing so, we need to keep in mind that only about one in ten incidents of assault and sex
offenses are committed by multiple offenders, and these incidents generally have few offend-
ers. An exception is represented by robbery for which half of the incidents involve multiple
offenders. We find that white offenders are associated with a higher likelihood of arrest in
case of robbery (estimate is 0.2 with standard error equal to 0.04), while the other estimated
associations are virtually zero (full results in Table 5).
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7. Limitations. Our empirical analysis relies on a series of assumptions about the mod-
eling and data that may not hold in reality. One key limitation of the modeling is that the
assumed independence across incidents may be violated. For example, when the same of-
fender is part of multiple separate crime incidents, arrest outcomes become correlated. Given
identifying offender-level information, we could, in principle, correct the variance estimates
to account for this dependence (Andrews and Monahan, 1992; White, 2014), but such data is
not available.

Another limitation of our modeling approach is the potential misspecification of the regres-
sion function used in estimating the likelihood of police notification. Through the sensitivity
analysis in Section 6, we have shown that employing a more flexible classifier on NCVS
data yields results that are similar to those of the logistic regression for most offense types.
Leveraging the model diagnostics, we have shown that the logistic regression model fitted on
NIBRS was misspecified. Consequently, the coefficient estimates require careful interpreta-
tion; see Buja et al. (2019b) and Berk et al. (2019) for detailed treatments of this topic, and
Fogliato et al. (2021) for a discussion of the limitations of similar approaches.

Certain variation in reporting rates may also fail to be captured specifically due to omitted
variable bias. For example, the NCVS data that are used in our analysis contain little in-
formation on the geographical location. Obtaining and incorporating this information may
influence the results (Baumer, 2002; Xie and Lauritsen, 2012; Xie and Baumer, 2019b).
Although analyses of the restricted-use NCVS data would overcome some of these issues,
relevant pieces of information, such as the specific location of the victimization, may simply
be missing from the data (Cernat et al., 2021).

Even more importantly, our analysis suffers from limitations related to the nature of the
data. These limitations are not unique to our study; they have been discussed in a plethora of
criminological works. Firstly, the recorded data may be of poor quality. With respect to survey
data, measurement errors arising from sampling design, data collection, victims’ recollection
of the events and untruthful reporting affect the quality of the data. What victims report in the
survey may not always coincide with the same information that is recorded in police data.

Information in NIBRS may not always accurately reflect the characteristics of the crime
incident. In this work, for example, we have observed that NCVS respondents were far more
likely to report serious injuries in case of sex offenses than what was recorded in NIBRS data.
This pattern is unlikely to be explained solely by differences in the underlying populations.
Overall, police data can be seen as an artefact of a manipulation process (Richardson, Schultz
and Crawford, 2019). It is also possible that instances of wrongful arrests, which we do not
consider in the analysis, may be present in the data (Loeffler, Hyatt and Ridgeway, 2019).

In addition to issues of data quality, the data are missing certain information that we hy-
pothesize being relevant to our analysis. For example, we included Hispanics in the analysis
because, as ethnicity information is not always recorded (and when recorded it can be im-
precise), this population could not be entirely excluded from the sample. However, there
is evidence that this ethnic group may be characterized by unique offending and reporting
behaviors (Steffensmeier et al., 2011; Roberts and Lyons, 2011; Rennison, 2010).

One further limitation of our analysis concerns the matching of offense categories between
the NCVS and the NIBRS, that do not perfectly map. However, even if the definitions were
to fully overlap, the type of offense that is reported by the victim may not correspond to the
coding of the same offense done by law enforcement. This potential issue may affect mainly
simple assaults, which represent the least serious type of crime considered in this analysis. We
also do not consider incidents where the victim does not personally see the offender, which
represent a minimal share of all incidents reported by NCVS respondents. Thus, together
with the fact that not all reported crime may be recorded, this implies that our estimates of
the arrest rates represent upper bounds of the true quantities.
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8. Discussion. In this work, we have proposed estimators of the rates of police notifica-
tion and of arrest for nonfatal violent crime on NIBRS that leverage data of unreported crimes
from NCVS. These estimators are consistent and asymptotically normal under some assump-
tions. Our empirical investigation of racial disparities revealed that incidents are marginally
more likely to be reported to the police when the offender is black. However, in cases of
assaults and robbery, crimes with black offenders are generally less likely to result in arrests.
These differences are small after accounting for crime characteristics. Additionally, the model
diagnostics showed that the direction of these disparities varies with crime characteristics.

We envision three directions in which the proposed methodology can be further developed.
First, we could employ nonparametric methods in place of the logistic regression model. In
this work, we obtained asymptotic normality for a two-step estimation approach where lo-
gistic regression was used in both steps. Nonparametric approaches that yield similar conver-
gence rates could be applied in the first step. For example, the method of kernels introduced in
Racine and Li (2004) can handle both categorical and continuous data. Although our empiri-
cal analysis did not uncover significant differences in the estimates of the likelihood of police
notification produced by parametric and nonparametric models, the latter is more flexible and
thus may be more suitable in certain applications.

Secondly, mixed effects logistic regression models could be employed for the estimation
of the likelihood of arrest. This represents a modeling approach often used in the social
sciences. In this work, we have employed a model that does not account for city- or agency-
level effects, which may drive many of the disparities, e.g., see the results of Fogliato et al.
(2021). Third, we assume covariate shift between NCVS and NIBRS. Future work could use
a reweighted loss to adjust for the shift in the two datasets.

Our study opens multiple avenues of research in the criminology field as well. Despite a
longstanding interest in the “dark figure of crime” (Skogan, 1977), how to accurately char-
acterize this figure remains challenging and not well understood. Our methodology repre-
sents one way through which it can be described and its magnitude be assessed. It would
be interesting to compare results obtained through our methodology with those from the
simulation-based approach proposed by Buil-Gil, Moretti and Langton (2021). Future work
may also leverage information about the socioeconomic status of the victim, which is avail-
able in NCVS data, and of the characteristics of the population in the police agency, which
can be obtained from auxiliary data sources and merged with NIBRS data. These aspects
were not considered in our work.

Similar to past studies on NCVS and NIBRS, the results described in this paper build on
several assumptions. Some of these assumptions may be violated. We hope that, over time,
police records will become more accurate and comprehensive, and that detailed information
about incidents will be made available through NIBRS, allowing for improved analyses.
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tions, and David Buil-Gil for helpful discussions. We also thank reviewers, associate editor,
and editor for their insightful comments.
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APPENDIX A: ADDITIONAL RESULTS

This section contains additional results. Table 3 shows the odds ratios of the coefficients
estimates of the logistic regression model run on NCVS data. Table 4 presents the results of
the regression analysis targeting the likelihood of arrest for crimes known to law enforcement
with individual offenders. Figure 3 shows the predicted likelihood of crime reporting π pro-
duced by logistic regression and SuperLearner for each observation in NCVS data. Lastly,
Figure 4 shows the focal slope model diagnostics.

TABLE 3
Regression Results (2003–2020 NCVS Data):
Estimating Police Notification Likelihood for

Single-Offender Incidents Using Logistic
Regression with Survey Weights.

Variable Odds ratio estimate

Age of off. 12-14 1.36 (0.43)
Age of off. 15-17 2.17 (0.58)**
Age of off. 18-20 2.00 (0.62)*
Age of off. 21-29 2.96 (0.84)***
Age of off. 30+ 2.66 (0.72)***
Off. is male 0.87 (0.08)
Off. is white 0.95 (0.08)
Age of victim 1.01 (0.00)***
Victim is male 0.90 (0.07)
Victim is white 0.85 (0.09)
Off. is acquaintance 0.71 (0.06)***
Off. is family member 0.94 (0.13)
Off. is intimate partner 0.95 (0.12)
Minor injury 1.41 (0.11)***
Serious injury 2.83 (0.35)***
During day 0.96 (0.07)
Private location 1.37 (0.12)***
Firearm present 1.39 (0.27).
Other weapon present 0.81 (0.14)
Offense only attempted 0.82 (0.14)
MSA, central city 0.90 (0.09)
MSA, not central city 1.03 (0.10)
Crime is robbery 0.85 (0.14)
Crime is sex offense 0.23 (0.05)***
Crime is simple assault 0.57 (0.10)**

Significance codes: p < 0.001 ‘***’, p < 0.01
‘**’, p < 0.05 ‘*’, p < 0.1 ‘.’.
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TABLE 4
Regression Results: Assessing Racial Disparities in Arrest Likelihood Based on Known Incidents to Police Agencies,

Using Crime Characteristics α(X).

Variable Sex offense Robbery Aggravated assault Simple assault

Intercept 0.42 (0.03)*** 1.53 (0.16)*** 1.55 (0.05)*** 0.93 (0.01)***
Age of offender 1.01 (0.00)*** 1.01 (0.00)*** 1.00 (0.00)*** 0.99 (0.00)***
Off. is male 1.15 (0.04)*** 0.93 (0.03)* 0.94 (0.01)*** 0.98 (0.00)***
Off. is white 1.04 (0.02)* 1.33 (0.03)*** 1.09 (0.01)*** 1.05 (0.00)***
Age of victim 0.98 (0.00)*** 1.00 (0.00)* 1.00 (0.00)*** 1.01 (0.00)***
Victim is male 0.90 (0.02)*** 0.93 (0.02)*** 1.01 (0.01) 0.99 (0.00)***
Victim is white 0.94 (0.02)*** 1.12 (0.02)*** 1.21 (0.01)*** 1.22 (0.01)***
Off. is acquaintance 1.24 (0.02)*** 1.80 (0.04)*** 1.25 (0.01)*** 0.85 (0.00)***
Off. is family member 1.41 (0.03)*** 2.67 (0.15)*** 1.98 (0.02)*** 1.58 (0.01)***
Off. is intimate partner 1.56 (0.03)*** 2.91 (0.11)*** 2.49 (0.02)*** 2.04 (0.01)***
Minor injury 1.35 (0.02)*** 1.02 (0.02) 1.27 (0.01)*** 1.76 (0.00)***
Serious injury 1.31 (0.03)*** 1.26 (0.04)*** 1.38 (0.01)***
During day 0.94 (0.01)*** 1.35 (0.02)*** 0.98 (0.01)** 0.98 (0.00)***
Private location 0.98 (0.01)* 0.89 (0.02)*** 1.23 (0.01)*** 1.07 (0.00)***
Firearm present 0.74 (0.04)*** 0.79 (0.02)*** 0.82 (0.01)***
Other weapon present 1.08 (0.03)*** 1.07 (0.02)** 1.04 (0.01)*** 0.99 (0.01)*
Multiple offenses 2.37 (0.05)*** 1.82 (0.06)*** 1.20 (0.01)*** 1.22 (0.01)***
Offense only attempted 1.01 (0.03) 1.12 (0.03)***
MSA, central city 0.68 (0.01)*** 0.90 (0.03)** 0.97 (0.01)** 0.96 (0.00)***
MSA, not central city 0.77 (0.01)*** 0.99 (0.03) 1.11 (0.01)*** 0.99 (0.00)**
Nb. of officers per 1000 capita (ORI) 1.00 (0.00)*** 0.99 (0.00)*** 0.99 (0.00)*** 1.00 (0.00)***
Log population served (ORI) 0.94 (0.00)*** 0.80 (0.01)*** 0.84 (0.00)*** 0.86 (0.00)***

Significance codes: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’, p < 0.1 ‘.’.
Notes: The table shows the odds ratios of the logistic regression coefficients for α, the likelihood of arrest for incidents
known to police agencies, fitted on the NIBRS data considered in the analysis. Standard errors are reported inside paren-
theses. Significance codes correspond to the p-values (p) of Wald tests to assess the statistical significance of the odds
ratios. Year- and state-level fixed effects are included in the regression model but are omitted from the table.
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TABLE 5
Regression Results (NIBRS Data): Assessing Racial Disparities in Arrest Likelihood for Incidents with One or More

Offenders, Using NCVS Data for Police Notification Estimates.

Variable Sex offense Robbery Aggravated assault Simple assault

Intercept 0.07 (0.01)*** 0.92 (0.12) 0.40 (0.05)*** 0.18 (0.02)***
Age of offender 1.01 (0.00)*** 1.01 (0.00)*** 1.01 (0.00)*** 1.00 (0.00)*
Off. is male 0.88 (0.06). 0.82 (0.03)*** 0.91 (0.04)* 1.00 (0.06)
Off. is white 1.00 (0.06) 1.18 (0.04)*** 1.04 (0.04) 1.00 (0.05)
Age of victim 0.99 (0.00)** 1.00 (0.00)*** 1.01 (0.00)*** 1.01 (0.00)***
Victim is male 0.83 (0.06)** 0.77 (0.03)*** 0.76 (0.03)*** 0.77 (0.04)***
Victim is white 0.78 (0.06)** 0.93 (0.05) 0.96 (0.05) 0.95 (0.06)
Off. is known 0.90 (0.06) 1.01 (0.04) 1.12 (0.05)** 0.97 (0.05)
Minor injury 1.64 (0.11)*** 1.21 (0.05)*** 1.50 (0.07)*** 1.89 (0.10)***
Serious injury 2.83 (0.29)*** 1.95 (0.10)*** 2.30 (0.13)***
During day 0.95 (0.05) 1.30 (0.05)*** 1.00 (0.04) 0.94 (0.04)
Private location 1.47 (0.10)*** 1.32 (0.05)*** 1.70 (0.07)*** 1.73 (0.09)***
Firearm present 1.05 (0.14) 1.08 (0.09) 0.97 (0.08)
Other weapon present 1.05 (0.13) 1.03 (0.09) 1.00 (0.08) 0.96 (0.10)
Multiple offenses 1.84 (0.05)*** 1.60 (0.03)*** 1.12 (0.01)*** 1.14 (0.01)***
Offense only attempted 0.84 (0.11) 0.91 (0.08)
MSA, central city 0.60 (0.05)*** 0.76 (0.04)*** 0.85 (0.04)** 0.83 (0.05)**
MSA, not central city 0.82 (0.07)* 0.94 (0.05) 1.08 (0.06) 1.01 (0.07)
Nb. of officers per 1000 capita (ORI) 1.00 (0.00)*** 0.99 (0.00)*** 0.99 (0.00)*** 1.00 (0.00)***
Log population served (ORI) 0.95 (0.00)*** 0.81 (0.00)*** 0.88 (0.00)*** 0.91 (0.00)***

Significance codes: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’, p < 0.1 ‘.’.
Notes: The table shows the odds ratios of the regression coefficients for q, the likelihood of arrest that accounts for
unreported crimes, estimated via generalized estimating equations (GEEs). The model is fitted on NIBRS data and uses the
estimates of the likelihood of crime reporting π obtained from NCVS data. Standard errors are reported inside parentheses.
Significance codes correspond to the p-values (p) of Wald tests to assess the statistical significance of the odds ratios. Year-
and state-level fixed effects are included in the regression model but are omitted from the table.
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FIG 3. Estimates of the likelihood of police notification π for observations in 2006–2015 NIBRS data produced
by the logistic regression (horizontal axis) and by the SuperLearner (vertical axis) fitted on 2003–2020 NCVS
data. For visualization purposes, we show the estimates relative to 1000 randomly sampled observations for each
crime type.
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Focal slope diagnostics for aggravated assault
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FIG 4. “Focal slope” model diagnostic for the logistic regression model for q, the likelihood of arrest that accounts
for unreported crimes, on 2006–2015 NIBRS data whose odds ratios of the coefficients estimates are presented in
Table 2. Only incidents with one offender are considered. Methodological details are described in Section 5. The
grey points correspond to the coefficient estimates relative to the offender’s race (white=1) obtained by fitting the
logistic regression model on each of 100 bootstrapped datasets, for each variable (panel’s title) and variable’s grid
value (value on the grid, horizontal axis). The black dots correspond to the means of such estimates. We observe
that the size and sign of the values of the black dots vary across the range of the regressors. This suggests the
presence of interactions between race and the regressors, which in turn indicates that our modeling approach is
misspecified.



24

APPENDIX B: DETAILS AND PROOFS

This section contains the proofs of the results presented in Section 4. In Section B.1,
we present the proof relative to the consistency and asymptotic normality of the coefficient
estimates for the logistic regression parameters obtained on survey data (Proposition 1). Then,
in Section B.2 we present the asymptotic properties of the estimators of the total number of
offenses N , expected rate of police notification π∗, and expected rate of arrest q∗ (Lemma
1, Propositions 2, 3, and 4). Lastly, we describe the results for estimation via the two-step
logistic regression (Propositions 5 and 6).

B.1. Estimation on NCVS. We provide some additional details on the framework pre-
sented in Section 4.1 before turning to the proof of Proposition 1. As a reminder, our aim is to
make inference on superpopulation parameters. This differs from the finite population frame-
work, for which logistic regression parameter estimation has been studied by Binder (1983).
In the following, the subscripts P v and ψ in the probability P and expectation E operators
denote superpopulation and sampling design, respectively.

Formally, let the superpopulation target parameter γ0 ∈ Int(Γ) be defined by the following
moment condition

EP v [hv(Rv,Zv;γ)] = 0,

where hv(Rv,Zv;γ) := (Rv−πv(Zv;γ))Zv . The parameter γ̃ ∈ Int(Γ) and the design-based
estimator γ̂ ∈ Γ are the solutions to (Lumley and Scott, 2017),

Nv∑
i=1

hv(Rvi ,Z
v
i ;γ) = 0, and(3)

Nv∑
i=1

wiIih
v(Rvi ,Z

v
i ;γ) = 0(4)

respectively. The estimating equation (3) is unbiased for γ0. Conditionally on the finite pop-
ulation V Nv

, equation (4) is unbiased for γ̃ provided that Eψ[Iiwi] = 1 for i = 1, . . . ,Nv .
Since we only have access to the observations for which Ii = 1, our estimation will be based
on the estimating equation (4). In the presence of endogenous or informative sampling, the
estimate γ̂ obtained by solving (4) may not coincide with the one we would obtain by solving
the unweighted estimating equation (Solon, Haider and Wooldridge, 2015).

In order to establish the asymptotic properties of the estimator γ̂ obtained by solving equa-
tion (4) on the sample V Nv

, we assume that the observations we have access to are sampled
from a finite number of strata with known size. Thus, for each stratum, our survey data rep-
resent a sample of the finite population belonging to that stratum, which in turn represents
an i.i.d. sample of the superpopulation distribution specific to that stratum. The following
proposition borrows the setup from Theorem 1.3.9 in Fuller (2011) and leverages the results
of Rubin-Bleuer and Kratina (2005).

PROPOSITION 1. Consider an increasing sequence of finite populations where the Nv-th
population has size Nv and consists of H ∈ Z+ strata. The h-th stratum is formed by the Nv

h

observations FNvh = {(ZvNvhi,R
v
Nvhi)}

Nv
h

i=1 which represent an i.i.d. sample of (Zvh,R
v
h) ∼

P vh , for h = 1, . . . ,H , where P vh is the distribution of the superpopulation of the specific
stratum. Assume that ∥Zvh∥∞ <M for some M > 0 and h= 1, . . . ,H . For the h-th stratum,
we have access to a sample of observations that are drawn from FNvh according to some
sampling design ψNvh and let INvhi = 1 if the i-th observation is selected, and INvhi = 0
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otherwise. Let {wNvhi}
Nv

h

i=1 indicate the set of weights associated with the sample in the h-
th stratum where wNvhi := EψNv [INvhi]

−1, and assume that maxh,iwNvhi < K for some
K > 0. We denote with nvNvh the (expected or fixed) sample size of the h-th stratum, with
nvNv :=

∑H
h=1 n

v
Nvh the size of the entire survey sample, and with λ := limNv→∞ nvNv/Nv

the limit of the size of the surveyed population compared to the entire finite population.
Consider a sequence of stratified samples that is selected such thatNv

h →∞, nvNvh →∞, and
limNv→∞Nv

h/N
v = limNv→∞ nvNvh/n

v
Nv = βh ∈ (0,1], for h = 1, . . . ,H . The parameters

γ0 and γ̃Nv , and the estimator γ̂Nv , with γ0, γ̃Nv ∈ Int(Γ) and γ̂Nv ∈ Γ, solve respectively

H∑
h=1

βhEP v
h
[EψNvh

[hv(RvNvhi,Z
v
Nvhi;γ)]] = 0,

GvNv(γ) :=
1

Nv

H∑
h=1

Nv
h∑

i=1

hv(RvNvhi,Z
v
Nvhi;γ) = 0,

ĜvNv(γ) :=
1

nvNv

H∑
h=1

Nv
h∑

i=1

wNvhiINvhih
v(RvNvhi,Z

v
Nvhi;γ) = 0.

Assume that, conditionally on the finite population,

√
nvNvĜ

v
Nv(γNv)

d→N

(
0,

H∑
h=1

βhΞ
f
h

)
as nvNv →∞ and, in addition, for γ ∈ Γ,

(5) lim
Nv→∞

1

nvNv

H∑
h=1

Nh∑
i=1

INvhiwNvhi∇γh
v(ZNvhi,RNvhi;γ) = Jv(γ)

where the positive definite covariance matrices Ξfh, for h = 1, . . . ,H , and Jv(γ) are non-
stochastic in the population, and Jv := Jv(γ0) = limNv

h→∞∇GvNv(γ0). Then

(Σv)−1/2
√
nvNv(γ̂Nv − γ0)

d→N (0, Id)

as nvNv →∞ where Σv := (Jv)−1[
∑H

h=1 βh(EP v
h
Ξfh + λΞsh)](J

v)−1 with the following ma-
trices

Ξsh := VarP v
h
(hv(Rvh,Z

v
h;γ0)) ,

J :=

H∑
h=1

βhEP v
h

[
∇γh

v(Rvh,Z
v
h;γ0)(∇γh

v(Rvh,Z
v
h;γ0))

T
]
.

PROOF. To simplify the notation, we will drop “v” and “Nv” from most of the subscripts
and superscripts. Consistency and asymptotic normality of γ̂ for γ0 follow from Theorem 6.1
of Rubin-Bleuer and Kratina (2005), which relies on the following five Assumptions.

C.1 GN (γ0)
p→ 0 as N →∞.

C.2 There is a compact neighborhood Γ of γ0 on which with probability one all GN (γ)
are continuously differentiable and ∇γGN (γ) converge uniformly in γ to a nonstochastic
limit Jv(γ) that is nonsingular at γ0.

C.3
√
NGN (γ0)

d→N (0,
∑H

h=1 βhΞ
s
h) as N →∞.
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C.4 Conditionally on the finite population, there is a compact neighborhood Γ of γ0 on which
∇γĜN (γ) converge uniformly in the design probability to limit that is nonstochastic in
the design probability and coincides with Jv(γ) at γ0 almost surely.

C.5 Conditionally on the finite population,
√
nĜN (γN )

d→ N (0,
∑H

h=1 βhΞ
f
h) as n→ ∞

where the covariance matrices Ξfh are nonstochastic in the superpopulation.

Note that C.1 is implied by C.3. To show that C.3 holds, we can prove that the Lindeberg
condition is satisfied and then apply the central limit theorem (proposition 2.27 in Van der
Vaart (2000)). For any ϵ > 0,

1

N

H∑
h=1

Nh∑
i=1

EPh
[∥(Rhi − π(Zhi;γ0))Zhi∥2 1(∥(Rhi − π(Zhi;γ0))Zhi∥> ϵ

√
N)]

<
1

N

H∑
h=1

Nh∑
i=1

dM21(
√
dM > ϵ

√
N)]

(6)

where we have used the fact that ∥Zhi∥ ≤
√
d∥Zhi∥∞ <

√
dM and |Rhi− π(Zhi;γ0)|2 ≤ 1.

Then limN→∞ 1(
√
dM > ϵ

√
N) = 0, and thus the RHS of (6) converges to 0. In addition,

lim
N→∞

1

N

H∑
i=1

Nh∑
i=1

VarPh
((Rhi − π(Zhi;γ0))Zhi) = lim

N→∞

H∑
h=1

Nh

N
Ξsh =

H∑
h=1

βhΞ
s
h

where the equality follows from the fact that observations are identically distributed within
strata, and Ξsh represents the covariance matrix for stratum h. Condition C.3 follows from an
application of the central limit theorem.

In order to show that C.2 holds, it suffices to prove that for any random vector γN ∈ Γ

converging in probability to γ0, ∇γGN (γN )
p→ Jv(γ0) for some nonstochastic limit J :=

J(θ0) (Theorem 1 in Iséki (1957)). We can decompose ∇γGN (γN ) as follows

1

N

H∑
h=1

Nh∑
i=1

e−γ0Zhi

(1 + e−γ0Zhi)2
ZhiZ

T
hi +

1

N

H∑
h=1

Nh∑
i=1

[
e−γNZhi

(1 + e−γ
T
NZhi)2

− e−γ0Zhi

(1 + e−γ
T
0 Zhi)2

]
ZhiZ

T
hi

where the first term converges in probability to

Jv(γ0) :=

H∑
h=1

βhEPh

[
e−γ

T
0 Zh(1 + e−γ

T
0 Zh)

−2
ZhZ

T
h

]
.

The second term can be rewritten as

1

N

H∑
h=1

Nh∑
i=1

[
eγ

T
0 Zhi(1− e(γN−γ0)TZhi) + e−γ

T
0 Zhi(1− e(γ0−γN )TZhi)

(1 + e−γ
T
NZhi)(1 + eγ

T
NZhi)(1 + e−γ

T
0 Zhi)(1 + eγ

T
0 Zhi)

]
(7)

which can be upper bounded by e∥γ0∥
√
dzM (e

√
dzM∥γN−γ0∥− 1). By the continuous mapping

theorem this bound is op(1). It follows that that C.2 is verified.
Condition C.5 follows from the Assumptions. For a discussions of the specific conditions

needed under various sampling designs, see Section 3.5 of Thompson (1997). Similarly, con-
dition C.4 follows from (5).

The result then follows from Theorem 6.1 of Rubin-Bleuer and Kratina (2005).
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B.2. Estimation on NIBRS. Throughout the proofs, we will use the following lemma.

LEMMA 1. Let f :X 7→R. Assume that A.1–A.3 hold. Then

E[f(X)] = E
[
f(X)

π(Z;γ0)

∣∣∣∣R= 1

]
π∗.

PROOF. We can show that

E[f(X)] = E
[
f(X)

R

P(R= 1|Z,X)

]
= E

[
f(X)

R

P(R= 1|Z)

]
where the first equality follows from the law of iterated expectations, while the second fol-
lows from A.2. Now, thanks to A.3 and A.1 we obtain that

E
[
f(X)

R

P(R= 1|Z)

]
= E

[
f(X)

R

π(Z;γ0)

]
.

The result follows.

Then we can derive the asymptotic properties of the estimator N̂ .

PROPOSITION 2. Consider the conditions of Proposition 1 to be satisfied, and Assump-
tions A.1–A.4 to hold. Then

(8) V
−1/2
N

√
n(N̂/N − 1)

d→N (0,1)

as N →∞ where

VN := (π∗)2
[
E
[
1− π(Z;γ0)

π(Z;γ0)2

∣∣∣∣R= 1

]
+ κW TΣvW

]
.(9)

with W := E[e−ZT γ0π(Z;γ0)
−1Z|R= 1].

PROOF. Consider the following first-order Taylor expansion of N̂/N − 1

1

N

N∑
i=1

(
Ri

π(Zi;γ0)
− 1

)

− (γ̂ − γ0)
T 1

N

N∑
i=1

Rie
−ZT

i γ0Zi + (γ̂ − γ0)
T 1

N

N∑
i=1

Rie
−ZT

i γ̃ZiZ
T
i (γ̂ − γ0)

where γ̃ is a vector between γ̂ and γ0. Using the Cauchy-Schwarz inequality together with
A.4, we obtain ((γ̃−γ0)TZi)2 ≤ ∥Zi∥2 ∥γ̂ − γ0∥2 <

√
dzM ∥γ̂ − γ0∥2. Thus, we can rewrite√

n(N̂/N − 1) as

(10)
√
n√
N

1√
N

N∑
i=1

(
Ri

π(Zi;γ0)
− 1

)

−
√
nv(γ̂ − γ0)

T√κ 1

N

N∑
i=1

ZiRie
−ZT

i γ0 +
√
κOp(

√
nv ∥γ̂ − γ0∥2).

The last term in (10) can be rewritten as Op(
∥∥√nv(γ̂ − γ0)

∥∥2 /√nv) = Op(1/
√
nv) thanks

to Proposition 1. The first term is a sum of i.i.d. random variables that are bounded by A.4
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and thus it is asymptotically normal with mean 0 thanks to the central limit theorem. By A.4,
N−1

∑N
i=1RiZie

−ZT
i γ0 in the second term is an average of i.i.d. bounded random variables

which converges in probability to E[RZe−ZT γ0 ] + Op(1/
√
N). We can then rewrite this

expectation as E[Ze−ZT γ0π(Z;γ0)
−1|R = 1]π∗ thanks to Lemma 1. Then

√
n(γ̂ − γ0) is

asymptotically normal by Proposition 1 and consequently the second term in (10) is asymp-
totically normal by Slutsky. Note that the first two terms in (10) are asymptotically indepen-
dent because they arise from different samples, and thus we have proved (8). The variance in
(9) follows by an application of Lemma 1.

PROPOSITION 3. Consider the conditions of Proposition 1 to be satisfied, and Assump-
tions A.1–A.4 to hold. Then

V
−1/2
π∗

√
n(π̂∗ − π∗)

d→N (0,1)

as N →∞ where

Vπ∗ := (π∗)2
[
E
[
π∗ − π(Z;γ0)

π(Z;γ0)2

∣∣∣∣R= 1

]
+ κ(π∗)2W TΣvW

]
.

with W := E[e−ZT γ0π(Z;γ0)
−1Z|R= 1]

PROOF. In order to show asymptotic normality, we can first rewrite π̂∗ − π∗ as

(11)
∑N

i=1Ri
N

− π∗ + π∗

(
1− N̂

N

)
+

(
N

N̂
− 1

)(∑N
i=1Ri
N

− π∗

)

+ π∗
(
N

N̂
− 1

)(
1− N̂

N

)

The third term in (11) is Op
(

1√
n
max

{
1√
n
, 1√

nv

})
thanks to Proposition 2, the weak law

of law of large numbers, and Slutsky. The last term is Op
(
max

{
1
n ,

1
nv

})
by Proposition 2.

Thus,
√
n(π̂∗ − π∗) is equal to

√
n

(∑N
i=1Ri
N

− π∗

)
+
√
nπ∗

(
1− N̂

N

)
+Op

(
max

{
1√
n
,

√
n

nv

})
.(12)

We can plug in the expansion of
√
n(1− N̂/N) in (10) to rewrite (12) as

(13)
√
n

N

N∑
i=1

Ri

(
1− π∗

π(Zi;γ0)

)
+ π∗

√
nv(γ̂ − γ0)

√
κ
1

N

N∑
i=1

Rie
−ZT

i γ0Zi

+Op

(
max

{
1√
n
,

√
n

nv

})
+
√
κOp(

√
nv ∥γ̂ − γ0∥2)

Note that the first term is a sum of i.i.d. random variables bounded by Assumption A.4 and
thus converges in distribution to N (0, (π∗)2(E[π(Z;γ0)−1]π∗ − 1)). Then asymptotic nor-
mality of

√
n(1− N̂/N) follows from analogous arguments as those in the proof of Propo-

sition 2.

PROPOSITION 4. Consider the conditions of Proposition 1 to be satisfied, and Assump-
tions A.1–A.4 to hold. Then

V
−1/2
q∗

√
n(q̂∗ − q∗)

d→N (0,1)
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as N →∞ where

Vq∗ = π∗q∗
[
π∗E

[
q∗ − α∗π(Z;γ0)

π(Z;γ0)2

∣∣∣∣R= 1

]
+ 1− α∗ + π∗κW TΣvW

]
with W := E[e−ZT γ0π(Z;γ0)

−1Z|R= 1], and α∗ := E[A|R= 1].

PROOF. This proof follows from the same set of arguments as the proof of Propositions 2
and 3, hence it is omitted.

PROPOSITION 5. Consider the conditions of Proposition 1 and Assumptions A.1–A.4 to
hold. Let θ0 ∈ Int(Θ) be defined by the moment condition (1) and θ̂ ∈Θ be the estimator that
solves the estimating equation (2). Then

Σ−1/2√n(θ̂− θ0)
d→N (0, Id)

as n→∞ with Σ := J−1
θ ΞJ−1

θ and

Ξ := E
[
h(A,Z,X;θ0, γ0)h(A,Z,X;θ0, γ0)

T |R= 1
]
+ κJγΣ

vJTγ ,

Jθ :=∇θG(θ0, γ0) = E[q(X;θ0)(1− q(X;θ0))π(Z;γ0)
−1XXT |R= 1],

Jγ :=∇γG(θ0, γ0) = E[q(X;θ0)e
−γT

0 ZXZT |R= 1].

PROOF. To show that θ̂ is consistent for θ0 and asymptotically normal, we can verify the
following three Assumptions from Yuan and Jennrich (1998):

C.1 ĜN (θ0, γ̂)
p→ 0 as N →∞.

C.2 There exists a neighborhood Θ of θ0 on which with probability one all ĜN (θ, γ̂) are
continuously differentiable and ∇θĜN (θ, γ̂) converge uniformly to a nonstochastic limit
that is nonsigular at θ0.

C.3 Ξ−1/2√nĜN (θ0, γ̂)
d→N (0, Idx) as N →∞ for some matrix Ξ.

Since C.3 implies C.1, we only need to prove C.2 and C.3.
We first show that C.3 holds. Consider the following Taylor expansion of

√
nĜN (θ0, γ̂)

√
n

N

N∑
i=1

Rih(Ai,Zi,Xi;θ0, γ0)−
1

N

N∑
i=1

Riq(Xi;θ0)e
−γT

0 ZiXiZ
T
i

√
n√
nv

√
nv(γ̂ − γ0)

+
1

N

N∑
i=1

Riq(Xi;θ0)e
−γ̃TZiXi

√
n

nv

(√
nv(γ̂ − γ0)

TZi

)2
.

where γ̃ is a convex combination of γ̂ and γ0. The first term is a i.i.d. sum whose terms have
bounded moments by A.4. Thus, it is asymptotically normal by the central limit theorem. The
termN−1

∑N
i=1Riq(Xi;θ0)e

−γT
0 ZiXiZ

T
i is an i.i.d. average formed by terms that have finite

moments by A.4, so it converges in probability to Jγ := E[Rq(X;θ0)e
−γT

0 ZXZT ] by the
weak law of large numbers. Thus, the second term is asymptotically normal by Proposition 1
and Slutsky. Using similar arguments as in the proof of Proposition 2, we can show that the
third term is op(1). The first two terms are asymptotically independent because they are arise
from separate samples, hence it follows that C.3 is verified.

To show that C.2 holds, it suffices to show that for any random vector θN ∈Θ converging
in probability to θ0, ˆ̇GN (θN , γ̂) :=∇θĜN (θ, γ̂)

p→ Jθ for some nonstochastic function Jθ :=
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J(θ0) (Theorem 1 in Iséki (1957)). Consider the following Taylor expansion of ˆ̇GN (θN , γ̂)

(14)
1

N

N∑
i=1

Riq(Xi;θN )(q(Xi;θN )− 1)(1 + e−Z
T
i γ0)XiX

T
i + (γ̂ − γ0)

T∇γ
ˆ̇GN (θN , γ̃)

where γ̃ is a convex combination of γ̂ and γ0. The first term in (14) can be rewritten as

1

N

N∑
i=1

Riq(Xi;θ0)(q(Xi;θ0)− 1)(1 + e−Z
T
i γ0)XiX

T
i

+
1

N

N∑
i=1

Ri [q(Xi;θN )(q(Xi;θN )− 1)− q(Xi;θ0)(q(Xi;θ0)− 1)] (1 + e−Z
T
i γ0)XiX

T
i

where the first term converges to Jθ := E[RXXT e−X
T θ0/π(Z;γ)] by the weak law of large

numbers. The second term is op(1) by Cauchy-Schwarz and A.4; the upper bound can be
derived using a similar strategy as in expression (7) of the proof of Proposition 1. For the
second term in (14), we have that

(15) (γ̂ − γ0)
T∇γ

ˆ̇GN (θN , γ̃)

= (γ̂ − γ0)
T 1

N

N∑
i=1

RiZiq(Xi;θN )(1− q(Xi;θN ))e
−ZT

i γ̃XiX
T
i

where each element of the dx × dx matrix can be upper bounded by

∥γ̂ − γ0∥M2e
√
dM supγ∈Γ∥γ∥

√
dz.

Together with Proposition 1, this implies each of the elements in (15) is op(1). It follows that
C.2 holds true.

Under Assumptions C.1, C.2, and C.3, the result follows by an application of Theorem 4
in Yuan and Jennrich (1998) and our Lemma 1.

Finally, we turn to the result on generalized estimation equations (GEEs) given by Propo-
sition 6. In the proof, we will use α0, which is such that for each 1 ≤ i ≤ N , K ≥ 2, and
1≤ k < j ≤Ki,

α0 :=
E[AikAij |Xi]−E[Aij |Xi]E[Aik|Xi]√

Var (Aik|Xi)
√

Var (Aij |Xi)

where E[Aij |Xi] = q(Xi;θ0) and Var (Aik|Xi) = q(Xi;θ0)(1− q(Xi;θ0)) by A.5.

PROPOSITION 6. Assume that the conditions of Proposition 1 and A.1–A.5 hold. As-
sume that the entries of W (X, θ,α)−1 and their derivatives are continuous. Let θ̂ be the
estimate of θ obtained by solving the estimating equation

ĜN (θ, α̂, γ̂) :=
1

N

N∑
i=1

RiXiDi(θ)Wi(θ, α̂)
−1

(
Ai −

qi(θ)

π(Zi; γ̂)

)
= 0.

Let α̂ be an estimator of α0 such that α̂− α0 =Op(1/
√
N). Then

Σ−1/2√n(θ̂− θ0)
d→N (0, Idx)
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as N →∞. Σ := J−1
θ (Ξ)J−1

θ with

Ξ := E[h(X,Z,A;θ0, α0)h(X,Z,A;θ0, α0)
T |R= 1] + κJγΣ

vJTγ

Jθ := E
[
XD(X;θ0)W (X;θ0, α0)

−1∇θq(θ0)π(Z;γ0)
−1|R= 1

]
Jγ := E

[
XD(X;θ0)W (X;θ0, α0)

−1q(θ0)Ze
−ZT γ0 |R= 1

]
where h(X,Z,A;θ0, α0) := XD(X;θ0)W (X;θ0, α0)

−1(A − q(θ0)π(Z;γ0)
−1), q(θ0) :=

(q(X1;θ0), . . . , q(XK ;θ0))
T with Xk for 1≤ k ≤K being the kth column of X.

PROOF. To prove consistency of θ̂ for θ0 and its asymptotic normality, we will use the
results of Yuan and Jennrich (1998) which rely on the following three conditions.

C.1 ĜN (θ0, α̂, γ̂)
p→ 0 as N →∞.

C.2 There exists a neighborhood Θ of θ0 on which with probability one ∇θĜN (θ, α̂, γ̂) is
continuously differentiable and its derivatives converge uniformly to a nonstochastic limit
that is nonsigular at θ0.

C.3 Ξ−1/2√nĜN (θ0, α̂, γ̂)
d→N (0, Idx) for some positive definite matrix Ξ.

To show that C.2 holds, it suffices to show that for any random vector θN ∈ Θ con-
verging in probability to θ0, ˆ̇GN (θ, α̂, γ̂) :=

ˆ̇GN (θN , α̂, γ̂)
p→ J(θ0) as N → ∞ for some

nonstochastic limit Jθ := J(θ0). First note that ∇θĜN (θ,α, γ) represents the mean of N
i.i.d. observations. For i = 1, . . . ,N , the ith observation is finite by A.4 and the fact that
maxNi

i,j=1 |Wi(θ,α)
−1| is bounded. To simplify the presentation, let us rewrite ˆ̇GN (θ,α, γ) =

ˆ̇GDN (θ,α, γ) +
ˆ̇GWN (θ,α, γ) + ˆ̇GqN (θ,α, γ) where

ˆ̇GDN (θ,α, γ) :=
1

N

N∑
i=1

Xi[∇θDi(θ)]Wi(θ,α)
−1

(
Ai − qi(θ)

1

π(Zi;γ)

)

ˆ̇GWN (θ,α, γ) :=
1

N

N∑
i=1

XiDi(θ)[∇θWi(θ,α)
−1]

(
Ai − qi(θ)

1

π(Zi;γ)

)

ˆ̇GqN (θ,α, γ) :=− 1

N

N∑
i=1

RiXiDi(θ)Wi(θ,α)
−1 1

π(Zi;γ)
[∇θqi(θ)]

Consider the following Taylor expansion of ˆ̇GN (θN , α̂, γ̂):

(16) ˆ̇GN (θN , α0, γ0) + (α̂− α0)∇α
ˆ̇GN (θN , α̃, γ0)

+ (γ̂ − γ0)
T∇γ

ˆ̇GN (θN , α0, γ̃) + (γ̂ − γ0)
T∇α∇γ

ˆ̇GN (θN , α̃, γ̃)(α̂− α0)

where γ̃ is a convex combination of γ̂ and γ0, while α̃ is a convex combination of α̂ and α0.
The first term in (16) can be rewritten as

(17) ˆ̇GN (θ0, α0, γ0) +
ˆ̇GN (θN , α0, γ0)− ˆ̇GN (θ0, α0, γ0).

The first term in (17) is an average of N terms that are i.i.d. and finite by A.1, A.4, and
the boundedness of Wi(θ,α)

−1. Since the model for the mean is corectly specified by A.5,
the first term converges in probability −E[RD(X;θ0)W (X;θ0, α0)

−1∇θq(θ0)π(Z;γ0)
−1]

by the weak law of large numbers and iterated expectations.
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We can then show that the difference between the remaining two terms in (17) con-
verges to 0 in probability. Let w̄ := maxθ∈θ,α∈[−1,1]maxi,j,k |(Wi(θ,α)

−1)jk|. We have that
ˆ̇GDN (θN , α0, γ0) is equal to

1

N

N∑
i=1

Xi∇θDi(θN )Wi(θN , α0)
−1

(
Ai −

qi(θN )

π(Zi;γ0)

)

<
1

N

N∑
i=1

M2w̄udxu
T
Ki
IKi

uKi
uTKi

[(
Ai −

qi(θ0)

π(Zi;γ0)

)
+

1

π(Zi;γ0)
(qi(θ0)− qi(θN ))

]
uTdx

where un := (1, . . . ,1)T has length n ∈ Z+. The inequality follows from A.4 and the bound-
edness of W (θN , α)

−1. Then N−1
∑N

i=1(Ai− qi(θ0)/π(Zi;θ0)) is an average of i.i.d. terms
that are finite and thus converges in proability to 0 by the weak law of large numbers and
A.5. By A.1, A.4, and Cauchy-Schwarz, we have the following upper bound

1

N

N∑
i=1

1

π(Zi;γ0)
(qi(θ0 − qi(θN )))<

1

ϵ
e∥θ0∥M

√
d
(
e∥θN−θ0∥M

√
d − 1

)
where the RHS converges to 0 in probability by the weak law of large numbers and the
continuous mapping theorem. It follows that ˆ̇GDN (θN , α0, γ0) converges to 0 in probability.

Using similar arguments, we can show that ˆ̇GWN (θN , α0, γ0) converges in probability to 0.

Clearly, ˆ̇GDN (θ0, α0, γ0) and ˆ̇GWN (θ0, α0, γ0) converge to 0 in probability by the weak law of

large numbers. Next, we need to show that ˆ̇GqN (θN , α, γ)−
ˆ̇GqN (θ0, α, γ) converges to 0 in

probability. This difference can be rewritten as

1

N

N∑
i=1

Ri
π(Zi;γ0)

Xi

[
Di(θ0)Wi(θ0, α0)

−1∇q(θ0)−Di(θN )W(θN , α0)
−1∇q(θN )

]
.

By A.4, the convergence boils down to showing that for all i= 1, . . . ,N and 1≤ k, j ≤Ki,

(Wi(θ0, α0)
−1)jkq(Xik;θ0)(1− q(Xik;θ0))q(Xij ;θ0)(1− q(Xij ;θ0))

− (Wi(θN , α0)
−1)jkq(Xik;θN )(1− q(Xik;θN ))q(Xij ;θN )(1− q(Xij ;θN ))

converges in probability to 0. This can be upper bounded by

(18) eθ
T
0 (Xik+Xij)(1 + eθ

T
0 Xik)(1 + eθ

T
0 Xij )(Wi(θ0, α0)

−1)kj∣∣∣∣e(θTN (Xik+Xij)

e(θ
T
0 (Xik+Xij)

1 + eθ
T
NXik

1 + eθ
T
0 Xik

1 + eθ
T
NXij

1 + eθ
T
0 Xij

(Wi(θN , α0)
−1)kj

(Wi(θ0, α0)−1)kj
− 1

∣∣∣∣
< e2∥θ0∥

√
dM (1 + e∥θ0∥

√
dM )2

∣∣∣e4∥θN−θ0∥
√
dM (1 + op(1))− 1

∣∣∣
where the inequality follows from Cauchy-Schwarz, the fact that ∥X∥ ≤

√
d∥X∥∞ <M ,

and the continuous mapping theorem thanks to the fact that Wi has continuous derivatives
and θN → θ0 as N →∞. Since θN

p→ θ0 as N →∞, the RHS in (18) is op(1). Thus, we
can conclude that the difference between the second and third terms in (17) converges in
probability to 0.
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Next, we turn again to the Taylor expansion of ˆ̇GN (θN , α̂, γ̂) in (16). Note that

∇α
ˆ̇GN (θN , α̃, γ0) is bounded and α̂− α0 = op(1), so their product converges to 0 in prob-

ability by Slutsky. The third term ∇γ
ˆ̇GN (θN , α0, γ̃) is also bounded and, by Proposition 1,

γ̂ − γ0
p→ 0 as N →∞, thus we can appply Cauchy-Schwarz to show that the product con-

verges to 0 in probability. The fourth term in the RHS of (16) can be shown to converge in
probability to 0 using analogous arguments. It follows that C.2 holds.

Since C.3 implies C.1, we only need to show that C.3 holds. To show that C.3 holds,
consider the following Taylor expansion of

√
nĜ(θ0, α̂, γ̂):

(19)
√
n

[
ĜN (θ0, α0, γ0) + (α̂− α0)∇αĜN (θ0, α0, γ0) + (γ̂ − γ0)

T∇γĜN (θ0, α0, γ0)

+ (α̂− α0)
2∇2

αĜN (θ0, α̃, γ0) + (α̂− α0)(γ̂ − γ0)
T

∇α∇γĜN (θ0, α0, γ0) + (γ̂ − γ0)
T∇2

γĜN (θ0, α, γ̃)(γ̂ − γ0)

+(α̂−α0)
2(γ̂−γ0)T∇2

α∇γĜN (θ0, α̃, γ0)+(α̂−α0)(γ̂−γ0)∇α∇2
γĜN (θ0, α0, γ̃)(γ̂−γ0)

+ (α̂− α0)
2(γ̂ − γ0)

T∇2
α∇2

γĜN (θ0, α, γ̃)(γ̂ − γ0)

]
.

The first term in (19) is composed by N i.i.d. bounded random variables and thus, by the
central limit theorem,

√
nĜN (θ0, α0, γ0)

d→N (0,Ξ)

as N →∞ where Ξ := Var(G(θ0, α0, γ0).
For the second term in (19),

√
n(α̂−α0) =Op(1) by Assumption, while ∇αĜN (θ0, α0, γ0)

converges in probability to 0 by the weak law of large numbers and A.5. By the continuous
mapping theorem, their product then converges in probability to 0.

For the third term,
√
n(γ̂ − γ0)

T∇γĜN (θ0, α0, γ0) =
√
nv(γ̂ − γ0)

T√κ∇γĜN (θ0, α0, γ0)

where ∇γĜN (θ0, α0, γ0)
p→ Jγ := E[∇γG(θ0, α0, γ0)] as nv →∞ by the weak law of large

numbers. In addition,
√
nv(γ̂ − γ0)

d→N (0,Σv) by propositon 1. Thus, the term converges
in distribution by Slutsky to N (0, JγΣ

vJγ).
For the fourth term, ∇2

αĜN (θ0, α̃, γ0) is bounded and
√
n(α̂−α0) =Op(1), so their prod-

uct converges in probability to 0 as N →∞. Using similar arguments, it is easy to see that
all remaining terms converge to 0 in probability as well. Thus C.3 is satisied.

The result of the Proposition follows from Theorem 4 of Yuan and Jennrich (1998).
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