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Black and Hispanic children in the United States have lower mean 

cognitive test scores than White children. The reasons for this are 
contested. The test score gap may be caused by socio-cultural factors, 
but the high heritability of g suggests that genetic variance might play a 
role. Differences between self-identified race or ethnicity (SIRE) groups 
could be the product of ancestral genetic differences. This genetic 
hypothesis predicts that genetic ancestry will predict g within these 
admixed groups. To investigate this hypothesis, we performed admixture-
regression analyses with data from the Adolescent Brain Cognitive 
Development Cohort. Consistent with predictions from the genetic 
hypothesis, African and Amerindian ancestry were both found to be 
negatively associated with g. The association was robust to controls for 
multiple cultural, socioeconomic, and phenotypic factors. In the models 
with all controls the effects were as follows: (a) Blacks, African ancestry: 
b = -0.89, N = 1690; (b) Hispanics, African ancestry: b = -0.58, Amerindian 
ancestry: b = -0.86, N = 2021), and (c) a largely African-European mixed 
Other group, African ancestry: b = -1.08, N = 748). These coefficients 
indicate how many standard deviations g is predicted to change when an 
individual's African or Amerindian ancestry proportion changes from 0% 
to 100%. Genetic ancestry statistically explained the self-identified race 
and ethnicity (SIRE) differences found in the full sample. Lastly, within all 
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samples, the relation between genetic ancestry and g was partially 
accounted for by cognitive ability and educational polygenic scores 
(eduPGS). These eduPGS were found to be significantly predictive of g 
within all SIRE groups, even when controlling for ancestry. The results are 
supportive of the genetic model. 

Keywords:  Ancestry, Admixture, education, Intelligence, ABCD cohort 
 

There are substantial differences in mean cognitive test scores between self-
identified racial and ethnic (SIRE) groups such as Whites, Hispanics, Blacks, and 
Asians in the United States (Murray, 2021; Roth et al., 2017). These differences 
are not attributable to psychometric bias, since cognitive test batteries typically 
exhibit measurement invariance across American SIRE groups (Scheiber, 
2016a,b; Warne, 2020a). As such, they represent real differences in latent 
cognitive ability. 

Although cognitive ability researchers disagree as to the causes of these 
differences (Rindermann, Becker & Coyle, 2020), a number of explanatory factors 
have been proposed. Most of these factors appeal to either cultural differences 
between groups or differing social and economic circumstances such as 
differences in poverty levels. Many researchers studying cognitive ability attribute 
some part of the differences to genetics (Rindermann, Becker & Coyle, 2020).  

Analyses of both nationally representative samples and cognitive battery 
standardization data (Magnuson & Duncan, 2006; Weiss & Saklofske, 2020) 
indicate that socioeconomic status (SES) can statistically explain a substantial 
percentage of test score variance across SIRE groups. However, it is not clear to 
what extent SES captures predominantly environmental or genetic causes, since 
SES is related to both genetic and environmental differences within groups 
(Belsky et al., 2018; Krapohl & Plomin, 2016; Rowe, Vesterdal & Rodgers, 1998). 
Regardless, the data suggest that even after fully accounting for average SES 
differences, there remains unexplained variance in cognitive test scores between 
groups. 

The genetic hypothesis is that differences in genes inherited from ancestors 
play a significant role in causing the SIRE related variation in cognitive test 
scores. Twin studies show non-trivial heritability for individual differences in 
cognitive ability within ethnic groups (Pesta et al., 2020). SIRE groups differ in 
European ancestry-based polygenic scores, and these scores are predictive of 
cognitive ability within ethnic groups (Lasker et al., 2019). Taken together, these 
results suggest that variation in cognitive ability among SIRE groups may be due 
in part to allele frequency differences at trait-associated gene loci.  
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Most studies that investigate the source of group differences categorize 
individuals by SIRE. However, SIRE reflects both genetic and sociocultural 
factors. This makes interpretation of simple SIRE-based results ambiguous. 
Admixture regression analyses, by including both SIRE and admixture variables 
simultaneously, can quantify the association between genetic ancestry and 
phenotype in admixed populations (Halder et al., 2015). These analyses test the 
extent to which the genetic differences between SIRE groups are responsible for 
observed trait differences. 

If continental populations differ polygenically in trait-related phenotypes, 
these continental differences are expected to contribute to individual differences 
in admixed populations. In aggregate, alleles that vary between ancestral 
populations will be associated with phenotype in admixed populations. Individuals 
who have a larger proportion of their global ancestry from the ancestral group 
with higher average frequencies of trait-enhancing alleles are likely to also have 
higher polygenic scores and higher average values in the phenotype. As such, 
associations between genetic ancestry and phenotype in admixed populations 
would suggest that phenotypic differences between continental populations have 
a genetic basis (Halder et al., 2015). This admixture regression methodology can 
be extended by including polygenic scores (PGS) to see if PGS mediate the 
association between g and ancestry. 

In this way, admixture-regression analysis allows researchers to separate the 
genetic element of SIRE from its cultural, behavioral, and psychosocial aspects, 
which may alternatively be responsible for the observed phenotypic differences. 
As Fang et al. (2019, p. 764) note: SIRE “acts as a surrogate to an array of social, 
cultural, behavioral, and environmental variables” and so “stratifying on SIRE has 
the potential benefits of reducing heterogeneity of these non-genetic variables 
and decoupling the correlation between genetic and non-genetic factors.” 

These analyses require a substantial degree of admixture in populations, and 
are more robust when that admixture has taken place in the course of the last 
seven to ten generations (Halder et al., 2015). In the USA, African and Hispanic 
Americans meet these requirements. They exhibit a wide range of European, 
African, and/or Amerindian ancestry due to admixture over the course of several 
generations. 

Thus we apply admixture analysis to examine if SIRE differences in general 
cognitive ability (g) can be accounted for by genetic variation related to 
continental ancestry. We hypothesize that g will be lower in African and Hispanic 
American samples relative to European American samples. These differences 
will be associated with African and Amerindian genetic ancestry within the SIRE 
groups. Additionally, we hypothesize that the association between genetic 
ancestry and g will be robust to controls for possible socio-environmental 
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confounds and that genetic ancestry will also statistically account for the SIRE 
differences found in the full sample. Finally, we hypothesize that current polygenic 
scores for cognitive ability and education (eduPGS) will both predict individual 
differences within SIRE groups and explain a portion of the effect of ancestry on 
g. 

 
Methods 

1.  Dataset 

The Adolescent Brain Cognitive Development Study (ABCD) is a 
collaborative longitudinal project involving 21 sites across the USA. ABCD is the 
largest, longitudinal study of brain development and child health ever conducted 
in the USA. It was created to research the psychological and neurobiological 
bases of human development. At baseline, around 11,000 children aged 9-10 
years were sampled, mostly from public and private elementary schools. A 
probabilistic sampling strategy was used, with the goal of creating a broadly 
representative sample of US children in that age range. Children with severe 
neurological, psychiatric, or medical conditions were excluded. Children were 
also excluded if they were not fluent in English or if their parents were not fluent 
in either English or Spanish. Parents provided informed consent. For this study, 
we utilized the baseline ABCD 3.01 data. We excluded individuals missing either 
cognitive or admixture scores. We also excluded any individual identified as being 
either Asian or Pacific Islander in order to focus on groups who were primarily of 
African, European, and Amerindian ancestry. This left 10,370 children. 

 For the admixture-regression analyses, SIRE groups were delineated using 
the ABCD race_ethnicity variable. This was a summary variable computed from 
18 separate multiple choice questions asking about the child’s race (“What race 
do you consider the child to be? Please check all that apply”) and one question 
asking if the child is of Hispanic ethnicity (“Do you consider yourself 
Hispanic/Latino/Latina?”). Children were classified into one of five mutually 
exclusive groups: non-Hispanic White (White), non-Hispanic Black (Black), 
Hispanic of any race (Hispanic), non-Hispanic Asian (Asian) or any other (Other). 
The Other category included any non-Hispanic children who were reported to be 
two or more racial groups. Because we dropped the Asian category, we were left 
with four mutually exclusive SIRE groups.  

 
2.  Variables for admixture regression analyses 

The following variables were used for the admixture regression analyses: 
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1.  g scores 
ABCD baseline data contain the following cognitive subtests, the first seven 

of which are from the NIH Toolbox® cognitive battery: Picture Vocabulary, 
Flanker, List Sorting, Card Sorting, Pattern Comparison, Picture Sequence 
Memory, Oral Reading Recognition, Wechsler Intelligence Scale for Children’s 
Matrix Reasoning, The Little Man Test (efficiency score), The Rey Auditory Verbal 
Learning Test (RAVLT), immediate recall, and RAVLT delayed recall. For details 
about these measures, see Thompson et al. (2019).  

We conducted multi-group confirmatory factor analysis (MGCFA) on these 
subtests, as detailed in Supplementary File 1. Briefly, we first checked whether 
outliers and missing data had any impact, and whether our results remained 
strong after correction. We then conducted exploratory factor analysis and multi-
group confirmatory factor analysis on the aforementioned set of subtests as a 
check for bias. After adjustment for age, we did not find any non-linear effects of 
age. Adjustment for sex did not reveal any evidence of meaningful differences in 
fit between the competing models, the g-model and the correlated factors model. 
We find that a three broad factor model (memory, complex cognition, and 
executive function) with g at the apex fits the data well. Moreover, strict 
measurement invariance holds between SIRE groups. The best fitting model 
(M6A, Table S2 of Supplementary File 1; CFI = .954, RMSEA = .044) was one in 
which g alone explains SIRE group differences. We output the g-factor scores 
from this model for use in the analyses. These score magnitudes are 
approximately the same as those derived from exploratory factor analysis.  
 
2.  Socioeconomic status (SES) 

We identified seven indicators of SES: financial adversity, area deprivation 
index, neighborhood safety protocol, parental education, parental income, 
parental marital status, and parental employment status. These are detailed in 
Supplementary File 2. We submitted the seven SES indicators to Principal 
Components Analysis (PCA). We used the R package PCAmixdata, which 
handles mixed categorical and continuous data (Chavent et al., 2014). The first 
unrotated component explained 42% of the variance. The PCA_1 loadings for the 
seven SES indicators were as follows: financial adversity (.31), area deprivation 
index (.49), neighborhood safety protocol (.31), parental education (.53), parental 
income (.66), parental marital status (.42), and parental employment status 
(0.21). More details and the correlation matrix for the SES indicators is provided 
in Supplemental File 2. 
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3.  Child US-born 
Parents were asked about the country of the child’s birth. We recoded this 

variable as 1 for “United States” and 0 for all other responses. 
 
4.  Immigrant family 

Parents were asked if anyone in the child’s family, including maternal or 
paternal grandparents, was born outside of the United States. This variable was 
coded as 1 for “Yes” and 0 for all other responses.  
 
5.  Nationality (Puerto Rican, Mexican, and Cuban) 

If a child was reported to be Hispanic, parents were additionally asked about 
the specific Latin American nation of origin (“Please choose the group that best 
represents the child's Hispanic origin or ancestry”). Seventy percent of the 
Hispanic children were reported as being either Mexican, Mexican American, or 
Chicano (N = 1028), Puerto Rican (N = 210), or Cuban or Cuban American (N = 

174). Dummy variables were created for these three nationality groups, with “1” 
indicating “Yes” and “0” indicating “No”. 
 
6.  Frac_SIRE 

Four dummy SIRE variables (Black, White, Native American, and Not 
Otherwise Classified (NOC) were computed from the 18 questions asking about 
the child’s specific race. The NOC SIRE group included those who were marked 
as: “Other Race,” “Refused to answer,” or “Don’t Know.” These were then 
recoded into interval variables in which individuals are assigned a SIRE fraction 
ranging from 0 to 1 (Liebler & Halpern-Manners, 2008). These were calculated as 
the value selected for each of the four groups (0 or 1) over the total number of 
responses (0 to 4) chosen. For example, someone marked as only Black and 
White would be assigned scores of (Black: ½; White: ½; Native_American: 0; 
NOC = 0). This SIRE coding was used as it was previously found to be the most 
predictive in models which also included genetic ancestry (Kirkegaard et al., 
2019).  
 
7.  Hispanic 

For the admixture-regression analysis conducted on the full sample, we 
additionally included a dummy variable for Hispanic ethnicity. This was coded as 
“1” for “Hispanic” and “0” for not Hispanic. As the subsamples were either 
Hispanic or non-Hispanic, this variable was not used in the subsample analyses.  
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8.  Ethnic attachment 
Parents were given the Multigroup Ethnic Identity Measure-Revised (MEIM-

R) Survey. In this they were asked six Likert-scaled (1 = strongly agree; 5 = 
strongly disagree) questions regarding their ethnic group: “I have spent time trying 
to find out more about my ethnic group, such as its history, traditions, and 
customs”, “I have a strong sense of belonging to my own ethnic group,” “I 
understand pretty well what my ethnic group membership means to me,” “I have 
often done things that will help me understand my ethnic background better,”, “I 
have often talked to other people in order to learn more about my ethnic group,”, 
“I feel a strong attachment towards my own ethnic group.” ABCD computed 
MEIM-R summary scores, which we standardized. We treat this as a measure of 
family ethnic-related culture. We only included this variable in the subsample 
analyses. In these the members belonged to the same broad ethnic group (e.g., 
Black or Hispanic). 
 
9.  State racism  

ABCD calculated state-level indicators of both racism and immigrant bias. 
These were based on both implicit bias measures and state-level structural 
variables. The two indicators correlated at r = .41 (N = 9386). We standardized 
both measures (M = 0, SD = 1) and then averaged them and standardized the 
resulting average.  
 
10.  Discrimination factor 

In Year 1 follow-up, the children were asked 6 questions regarding perceived 
ethnic, racial, national, or color based discrimination. The questions were as 
follows: “In the past 12 months, have you felt discriminated against: because of 
your race, ethnicity, or color?”, “In the past 12 months, have you felt discriminated 
against: because you are (or your family is) from another country?”, “How often 
do the following people treat you unfairly or negatively because of your ethnic 
background?” (Teachers? Other adults outside school? Other students?), “I feel 
that others behave in an unfair or negative way toward my ethnic group.” We 
imputed missing data using the mice package (df, m = 5, maxit = 50, method = 

'pmm', seed = 500). We used the mirt package in R to perform factor analysis on 
the six questions. We then standardized and saved the factor scores. 
 
11. Skin_color, P_Brown_Eye, P_Intermediate_Eye, P_Blue_Eye, P_Black_Hair, 
P_Brown Hair, P_Red_or_Blond_Hair).  

Conley and Fletcher (2017) have suggested that phenotypic-based 
discrimination might mediate the association between cognitive ability and 
genetic ancestry. This is called the colorism model (Hu et al., 2019). It can be 
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tested by including indices of race-related phenotype into the regression models 
to see if these capture the association between ancestry and cognitive ability. As 
such, we include measures of eye, hair, and skin color. Skin, Hair, Eye color were 
calculated based on the publicly available, “Hirisplex Eye, Hair and Skin Colour 
DNA Phenotyping Webtool.” This tool and score calculations have been detailed 
by Lasker et al. (2019). We additionally combined (summed) the red and blond 
hair probabilities. Skin color was scaled as detailed in Lasker et al. (2019), with 
higher scores representing darker color, and then standardized. The eye and hair 
color variables represent the percent in the full sample with the specific color and 
were left unstandardized to retain interpretability. 
 
12.  Admixture estimates 

Imputing and genotyping was done by the ABCD Research Consortium 
using Illumina XX. 516,598 variants survived the quality control. Before global 
admixture estimation, we applied quality control using PLINK 1.9. We used only 
directly genotyped, bi-allelic, autosomal SNP variants (494,433 before, 493,196 
after lifting). We pruned variants for linkage disequilibrium at the 0.1 R² level using 
PLINK 1.9 (--indep-pairwise 10000 100 0.1). This variant filtering was done in the 
reference population dataset to reduce bias from sample non-representativeness. 
99,642 variants were left after pruning. We merged the target samples from 
ABCD with reference population data for the populations of interest. A k=5 
solution with European, Amerindian, African, East Asian and South Asian 
components provides the most comprehensive but parsimonious model of the US 
population, capturing all the predominant ancestral backgrounds in the US 
population. We merged our sample with relevant samples from 1000 Genomes 
and from the HGDP to perform the cluster analysis and identify these k=5 
components. The following populations from 1000 Genomes and from the HGDP 
reference populations were excluded: Adygei, Balochi, Bedouin, Bougainville, 
Brahui, Burusho, Druze, Hazara, Makrani, Mozabite, Palestinian, Papuan, San, 
Sindhi, Uygur, Yakut. We excluded these populations because they were overly 
admixed or because the individuals in the ABCD sample lacked significant 
portions of these ancestries (e.g., Melanesians and San). We split the ABCD 
target samples into 50 random subsets (222 persons each) and merged them 
sequentially with the reference data. Admixture at k = 5 was run on each of the 50 
merged subsets. This repeated subsetting was done to avoid skewing the 
admixture algorithm to European ancestry which was predominant in the ABCD 
sample.  
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13.  First 20 Principal components 
For the analysis of PGS predictivity within SIRE groups we controlled for the 

first 20 ancestry principal components to take into account population structure 
related effects. These components were generated by PLINK v1.90b6.8 when 
computing polygenic scores.  
 
14.  eduPGS 

For polygenic scores (PGS), we scored the genomes using PLINK 
v1.90b6.8. For background, a polygenic score (PGS) “is an estimate of an 
individual's genetic liability to a trait or disease, calculated according to their 
genotype profile and relevant genome-wide association study (GWAS) data” 
(Choi, Mak & O’Reilly, 2020). We used the genome-wide association study 
(GWAS) results from Lee et al. (2018). Specifically, we used the multi-trait 
analysis of genome-wide association study (MTAG) eduPGS SNPs (N = 8,898 
variants in this sample) to compute eduPGS. The MTAG eduPGS were computed 
using MTAG, a method for analyzing statistics from genome-wide association 
studies (GWAS) on different but genetically correlated traits (e.g., education and 
intelligence). These scores were based on cognitive ability (n = 257,841), hardest 
math class taken (n = 430,445), and mathematical ability (n = 564,698) (Lee et 
al., 2018). We use these PGS because previous research has shown them to 
have trans-ethnic predictive validity in European, Hispanic, and African American 
populations (Fuerst, Kirkegaard & Piffer, 2021; Lasker et al., 2019). Moreover, 
common forms of bias were found not to account for the ancestry-related eduPGS 
differences (Fuerst et al., 2021). Thus, we can say that this PGS plausibly 
captures genetic effects between ancestry groups. 
 
15.  The NIH Toolbox® (NIHTBX) neuropsychological battery 

For one validation analysis of the eduPGS which included Asians, we used 
the NIHTBX summary scores. This was because we did not run MGCFA on the 
small Asian samples and so did not have g scores for these groups. This battery 
has been shown to be measurement invariant across American Black, Hispanic, 
and White SIRE groups (Lasker et al., 2019). The effects of age and sex were 
controlled for. We standardized the residuals. 
 
3.  Methods (Analyses) 

We first present the descriptive statistics for the sample and the subsamples. 
We then explore the bivariate relation between European admixture and g-
scores. We include both linear regression lines and loess lines in the regression 
plots (based on the gg_scatter package in R). These analyses are descriptive and 
do not take into account the complex structure of the data.  
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After, we run a series of within-SIRE (Black, Hispanic, and Other) admixture-
regression analyses to control for potential environmental confounds. For these 
analyses, we set European ancestry as a reference value with a value of zero. 
Following Heeringa and Berglund’s (2021) recommendations, we use a multi-
level mixed effects three-level (site, family, individual) model. In this model, 
recruitment site and family common factors are treated as random effects (i.e., as 
random samples from a population). We further report the dense numeric matrix 
results for the regression models in Supplementary File 3.  

The pooled data with both the regular ABCD baseline sample and the pooled 
twin samples were used. As Heeringa and Berglund (2021) note, the specification 
replicates that used by the ABCD Data Exploration and Analysis Portal (DEAP). 
Thus, the use of this multilevel model also aids in replication. For the regression 
analyses on the SIRE subsamples, we ran four models. The first model includes 
genetic ancestry and controls for both child and family immigrant status. The 
second model adds a term for SIRE and ethnic attachment to capture SIRE 
specific cultural effects. The third model adds terms to capture possible 
discrimination related effects: state-level racism, child reported experiences of 
discrimination, and race-related phenotype. The fourth model adds our general 
SES variable. Geographic effects are controlled for by including study site as a 
random effect in the model.   

For the regression analyses, general cognitive ability scores (g-scores) are 
used as the dependent variable. This variable was standardized (M = 0.00; SD = 
1.00) in the full sample. As for the independent variables, both the ancestry and 
fractional SIRE variables were left unstandardized. This allows the 
unstandardized beta coefficients for these variables to be interpreted as the effect 
of a change in 100 percent ancestry/SIRE identity on one standardized unit of 
cognitive ability. The rationale for this method has been detailed elsewhere 
(Lasker et al., 2019). The Child_USA_Born and Immigrant_Family dummy 
variables were also left unstandardized to retain interpretability. The three eye 
color and the three hair color variables, which represent probabilities that sum to 
one in the full samples, are also not standardized to retain interpretability. The 
remaining variables — ethnic attachment, state racism, discrimination factor, skin 
color, and SES — are all standardized in the full sample. Thus, the 
unstandardized B coefficient for these variables represents the change in g 
induced by a change of one standard deviation in the independent variable. 

Results 

1.  Descriptive statistics 

The descriptive statistics for the total sample and the four SIRE subsamples are 
shown in Table 1. Cohen’s d for the difference in g between Black and White 
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Americans comes to 1.02 d. This represents a large effect by conventional 
standards (Cohen, 1988) and is typically sized for measured g differences across 
SIRE groups (Roth et al., 2017). The difference between Hispanic and White 
Americans is 0.38 d, while that between Others and White Americans is 0.37 d. 
These latter two differences represent small to medium sized effects (Cohen, 
1988). The Hispanic-White difference is smaller than usually reported (e.g., Roth 
et al., 2017). This could be due to the exclusion of children who were not fluent in 
English. 

 
Table 1.  Total sample and subsample characteristics. 

 
Total sample Black Hispanic Other White 

M ± SD M ± SD M ± SD M ± SD M ± SD 

Age (in Months) 119.0 ± 7.49 118.9 ± 7.28 118.6 ± 7.58 118.7 ± 7.40 119.2 ± 7.52 

g 0.00 ± 1.00 -0.69 ± 1.07 -0.10 ± 0.99 -0.09 ± 1.09  0.24 ± 0.86 

SES 0.00 ± 1.00 -0.98 ± 0.93 -0.36 ± 0.91 -0.40 ± 1.00  0.45 ± 0.75 

frac_White_SIRE 0.73 ± 0.43  0.00 ± 0.00  0.67 ± 0.45  0.39 ± 0.25  1.00 ± 0.03 

frac_Black_SIRE 0.20 ± 0.38  1.00 ± 0.04  0.07 ± 0.23  0.29 ± 0.26  0.00 ± 0.00 

frac_Native_Amer._SIRE 0.02 ± 0.11  0.00 ± 0.00  0.03 ± 0.13  0.18 ± 0.28  0.00 ± 0.00 

frac_Other_SIRE 0.06 ± 0.23  0.00 ± 0.04  0.23 ± 0.42  0.13 ± 0.34  0.00 ± 0.03 

European_ancestry 0.75 ± 0.33  0.16 ± 0.11  0.60 ± 0.21  0.62 ± 0.25  0.98 ± 0.05 

African_ancestry 0.18 ± 0.31  0.82 ± 0.11  0.10 ± 0.15  0.32 ± 0.26  0.01 ± 0.02 

Amerindian_ancestry 0.06 ± 0.14  0.01 ± 0.02  0.28 ± 0.19  0.04 ± 0.09  0.01 ± 0.03 

South_Asian_ancestry 0.00 ± 0.02  0.00 ± 0.01  0.01 ± 0.01  0.01 ± 0.05  0.00 ± 0.01 

East_Asian_ancestry 0.01 ± 0.03  0.01 ± 0.02  0.01 ± 0.02  0.01 ± 0.07  0.00 ± 0.02 

State_racism 0.00 ± 1.00  0.44 ± 0.93 -0.35 ± 0.93  0.26 ± 0.99 -0.04 ± 0.99 

Discrim_fact 0.00 ± 1.00  0.47 ± 1.24  0.09 ± 1.04  0.19 ± 1.05 -0.19 ± 0.83 

Ethnic_attachment 0.00 ± 1.00  0.38 ± 1.03  0.23 ± 1.01  0.05 ± 1.00 -0.19 ± 0.94 

Skin_color 0.00 ± 1.00  1.32 ± 0.42  0.58 ± 0.80  0.36 ± 0.91 -0.62 ± 0.60 

P_Brown_Eye 0.56 ± 0.41  0.97 ± 0.10  0.83 ± 0.28  0.73 ± 0.35  0.33 ± 0.35 

P_Intermediate_Eye 0.08 ± 0.07  0.02 ± 0.03  0.06 ± 0.06  0.07 ± 0.06  0.10 ± 0.07 

P_Blue_Eye 0.36 ± 0.41  0.02 ± 0.08  0.11 ± 0.25  0.20 ± 0.33  0.57 ± 0.39 

P_Black_Hair 0.23 ± 0.24  0.55 ± 0.16  0.38 ± 0.23  0.28 ± 0.20  0.09 ± 0.10 

P_Brown Hair 0.46 ± 0.18  0.43 ± 0.13  0.49 ± 0.16  0.54 ± 0.15  0.45 ± 0.20 

P_Red_or_Blond_Hair 0.30 ± 0.29  0.02 ± 0.05  0.13 ± 0.18  0.18 ± 0.21  0.46 ± 0.26 

Child_USA_Born 0.98 ± 0.15  0.98 ± 0.15  0.94 ± 0.24  0.98 ± 0.14  0.99 ± 0.12 

Immigrant_family 0.28 ± 0.45  0.14 ± 0.35  0.73 ± 0.44  0.20 ± 0.40  0.18 ± 0.38 

Puerto_Rican    0.10 ± 0.31   

Mexican    0.51 ± 0.50   

Cuban     0.09 ± 0.28   

eduPGS 0.00 ± 1.00 -1.33 ± 0.57 -0.21 ± 0.76 -0.36 ± 0.85  0.50 ± 0.77 

Note: Nationality variables (Mexico, Cuba, Puerto Rico) were only computed for 

Hispanics.   
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In this sample, parent-identified Whites are 98% European in ancestry (1% 
African; 1% Amerindian). Since this group has little admixture, we relegate the 
within SIRE admixture-regression analyses to the supplementary file. Both the 
Black (82% African, 16% European, 1% Amerindian) and the Other (62% 
European, 32% African, 4% Amerindian) groups are African-European admixed 
groups. Hispanics additionally have a substantial Amerindian component (60% 
European, 28% Amerindian, 10% African). Figure 1 shows the distribution of 
ancestry by SIRE groups. These admixture percentages correspond with those 
typically reported in the literature (e.g., Bryc et al., 2015).  
 

 
Figure 1.  Admixture triangle plot for SIRE groups in the ABCD sample. 
 
2.  Regression plots and admixture regression analyses 

1.  Black Americans 
Figure 2 shows the regression plot for European ancestry and g-scores 

among Black children. European ancestry is significantly (r = .10, N = 1690) 
associated with g scores. The R boxplot function indicated 13 outliers. However, 
removing these had no effect on the bivariate correlation (r = .10, N = 1677). 
Additionally, the Loess regression line indicated a possible curvilinear relation 
with a slight uptick in scores at the lowest European ancestry decile. Further 
analysis showed that this was due to relatively high scores of individuals from 
African immigrant families (MAfrican_immigrant = -.28, N = 60). Limiting our scope to 
African Americans within US-born families raises the correlation to r = .13 (N = 

1475); for African Americans with 2% to 80% European admixture, this correlation 



MANKIND QUARTERLY 2021 62:1  

198 

 

is r = .11 (N = 1635). These results are shown in Table S4 of Supplementary file 
3 along with scores by African American subgroups. The full correlation matrices 
are also provided in Supplementary File 3.  
 

 
Figure 2.  Regression plot of European ancestry and g in the Black American 
subsample (N = 1690). 
 

We next proceed to the admixture-regression analyses. Because the Black 
SIRE category excludes multi-racial individuals, we do not include a term for 
fraction SIRE in these models. As seen in Table 2, African ancestry is strongly 
and significantly negatively related to cognitive ability in all four models. 
Amerindian ancestry is also negatively related to g-scores; however, owing to the 
low Amerindian admixture among non-Hispanic Blacks — and consequently the 
high standard errors — these estimates are not reliable. Adding ethnic attachment 
scores in Model 2 does not change the relationship with Amerindian and African 
ancestry. As seen in Model 3, measures of racial discrimination do not mediate 
the relation between g and ancestry. Of these variables added to Model 3, only 
experiences of discrimination had a significant independent effect. Finally, as 
seen in Model 4, while SES was significantly related to g, it did not substantially 
attenuate the association between African ancestry and g (bAfrican ancestry = -1.08 to 
-0.89). 
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Table 2.  Regression results for the effect of genetic ancestry on g Among Black 
Americans (N = 1690). Shown are the beta coefficients (b) and p-values (p) from 
the mixed effects models with recruitment site and family common factors treated 
as random effects. The values in parentheses are standard errors. The marginal 
and conditional R2 are provided at the bottom. 
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2. Hispanic Americans 

Figure 3 shows the regression plot for European ancestry and g scores 
among Hispanic children. As seen, European ancestry is significantly (r = .23, N 

= 2021) associated with g scores. While the R boxplot function indicates that there 
are 23 outliers, removing these had little effect on the bivariate correlation (r = .22, 
N = 1998). The Loess regression line suggests a possible slight uptick in scores 
at the lowest European ancestry decile. However, the 95% confidence intervals 
of this line (not shown) overlapped with the linear regression line.  

 

 

Figure 3.  Regression plot of European ancestry and g in the Hispanic American 
subsample (N = 2021). 

 
For the Hispanic admixture-regression analyses, we include a term for race 

because the Hispanic ethnic category is inclusive of all self-identified racial 
groups. As shown in Table 3, both Amerindian and African ancestry are strongly 
negatively associated with g in the first three models. Adding SIRE ethnic identity 
and the ethnic attachment variable in Model 2 had little effect on the beta for 
Amerindian ancestry. Doing so increases the effect of African ancestry. In Model 
3, both skin color and experiences of discrimination have significant independent 
effects on g, but these variables only slightly attenuated the relation between g 
and Amerindian and African ancestry. However, as seen in Model 4, SES 
attenuated the effect of Amerindian and African ancestry (Model 3: bafrican ancestry = 
-0.96 →Model 4: bafrican ancestry = -0.58; Model 3: bamerindian ancestry = -1.37 →Model 
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4: bamerindian ancestry = -0.86). Nonetheless, the magnitudes of the Amerindian and 
African ancestry effects remained medium to large in size and statistically 
significant. 

 
Table 3.  Regression results for the effect of genetic ancestry on g among 
Hispanic American children (N = 2021). Shown are the beta coefficients (b) and 
p-values (p) from the mixed effects models with recruitment site and family 
common factors treated as random effects. The values in parentheses are 
standard errors. The marginal and conditional R2 are provided at the bottom. 
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3.  Other Americans 

Figure 4 shows the regression plot for European ancestry and g-scores 
among the Other group. European ancestry is significantly (r = .19, N = 748) 
associated with g scores. Eight outliers were identified using the R boxplot 
function. Removing these had little effect on the correlation (r = .16, N = 740). The 
Loess regression line show a slight uptick in scores at the lowest European 
ancestry decile. However, the 95% confidence intervals of this line overlapped 
with the linear regression line. The correlation matrix is provided in the 
Supplementary File.  

 

 
Figure 4.  Regression plot of European ancestry and g in Other American 
subsample (N = 748). 
 

As for Hispanics, we include a term for race because the Other American 
ethnic category is inclusive of all self-identified racial groups. As seen in Table 4, 
both coefficients for Amerindian and African ancestry show a strong negative 
association with g from Model 1 through Model 4. Adding SIRE ethnic identity and 
the ethnic attachment variable in Model 2 has little effect on the beta for 
Amerindian ancestry. Doing so increases the effect of African ancestry. In Model 
3, only experiences of discrimination has a significant independent effect on g. 
The discrimination variables did not attenuate the relation between g and 
Amerindian and African ancestry. As seen in Model 4, SES moderately 
attenuated the effects of Amerindian and African ancestry (Model 3: bafrican ancestry 
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= -1.38 →Model 4: bafrican ancestry = -1.08; Model 3: bamerindian ancestry = -1.51 →Model 
4: bamerindian ancestry = -1.09). Nonetheless, the magnitudes of these ancestry effects 
remained large in magnitude and statistically significant. 

 
Table 4.  Regression results for the effect of genetic ancestry on g among Other 
Americans children (N = 748). Shown are the beta coefficients (b) and p-values 
(p) from the mixed effects models with recruitment site and family common factors 
treated as random effects. The values in parentheses are standard errors. The 
marginal and conditional R2 are provided at the bottom. 
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4.  White Americans 

We do not report the admixture regression results for the 5911 non-Hispanic 
White Americans. These results are unreliable owing to the low dispersion in 
African and Amerindian ancestry within this SIRE group (see Table 1). Thus, we 
relegate these results to the supplemental material. Briefly, though, in Model 4 for 
this subsample, both African ancestry (bAfrican ancestry = -.85, p = .110) and 
Amerindian ancestry (bAmerindian ancestry = -.96) also have large negative effects. 
However, this effect is only statistically significant for Amerindian ancestry (p = 

.012). 
 

5.  Full sample 

The results above indicate that factors associated with genetic ancestry are 
related to g within SIRE groups. These findings also suggest that these same 
factors explain differences between SIRE groups (Halder et al., 2015). Using the 
full sample, we examine this implication. The relation between European ancestry 
and g for the full sample is shown in Figure 5. As expected, there is a strong 
positive association for the SIRE groups between ancestry and g (r = .36; N = 

10370). Because the range of ancestry is not restricted — restriction of range 
attenuates correlations — the correlation is high. In this plot, we again see the 
uptick at the lowest decile of European admixture. This is due to the relatively 
high scores of children of recent African immigrants. 
 

 

Figure 5.  Regression plot of European ancestry and g in the full sample (N = 

10370). 
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Table 5.  Regression results for the effect of ancestry on cognitive ability in the 
full sample (N = 10,370). Shown are the beta coefficients (b) and p-values (p) from 
the mixed effects models with recruitment site and family common factors treated 
as random effects. The values in parentheses are standard errors. The marginal 
and conditional R2 are provided at the bottom. 
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To examine if SIRE differences can be accounted for by genetic ancestry, 
we construct a new set of regression models using the full sample. As seen in 
Table 5 in the first two models, Model 1a and Model 1b, we include only genetic 
ancestry variables or alternatively SIRE variables along with controls for migrant 
status. As seen in Model 2, none of the SIRE values remain significant after 
adding genetic ancestry to the model. These results indicate that ancestry-
associated factors account for the SIRE differences in g. We additionally include 
a Model 3, which adds the cultural, socioeconomic, and phenotypic indices. As 
seen in Model 3, these variables attenuated the effect of African and Amerindian 
ancestry (Model 2: bafrican ancestry = -1.31 →Model 3: bafrican ancestry = -0.80; Model 2: 
bamerindian ancestry = -1.57 →Model 3: bamerindian ancestry = -0.86), but the ancestry effects 
remain large. Note that the effects of East Asian and South Asian ancestry are 
insignificant because there is little variance in these ancestry components. This 
is because we excluded everyone identified as Asian and Pacific Islander. 

Finally, we can check the extent to which eduPGS can explain ancestry 
effects. Before doing so, we verify that eduPGS are associated with g within each 
of the SIRE groups. In doing so, we include controls for the first 20 genetic 
principal components or, alternatively, continental ancestry (with European 
ancestry left as the reference). Moreover, we run the analysis both using all 
families and using only singleton families (i.e., families with only one child). The 
full results are provided in the supplementary material. The results are 
summarized in Table 6. As previously found, the eduPGS by g associations are 
attenuated among African Americans, but not among Hispanic and Other 
Americans (Fuerst et al., 2021). Nonetheless, eduPGS are significantly 
associated with g within all SIRE groups. 

 
Table 6.  Validities (b) of eduPGS by American SIRE groups from multilevel 
regression models with g as the dependent variable and PGS as a predictor. 

Controls Sample Black Hispanic Other White 

20 PCs Full Sample 0.17 0.27 0.32 0.26 
Ancestry Full Sample 0.16 0.27 0.32 0.27 
20 PCs Singletons 0.19 0.29 0.26 0.27 

Ancestry Singletons 0.18 0.29 0.28 0.26 

Note: Sample sizes for the full samples are: Black (N = 1690), Hispanic (N = 2021), Other 
(N = 748) and White (N = 5911). The sample sizes for the singletons subsamples are: 
Black (N = 1159), Hispanic (N = 1516), Other (N = 505), and White (N = 3674). All betas 
are statistically significant at the p < .01 level. Singletons = single child families. 

 
For further validation of the PGS, we correlated the eduPGS with the NIHTBX 

summary scores which we had for all groups, including Asians. We computed 



FUERST, J.G.R., et al.     GENETIC ANCESTRY AND GENERAL COGNITIVE ABILITY 

207 

 

mean scores for all ABCD SIRE subgroups and combinations with N ≥ 50. There 
were 17 such groups. We then correlated the eduPGS with the mean subgroup 
test scores. This correlation came to r = .93. Thus, we conclude, in line with 
Chande et al. (2020), that “the general concordance seen between genetically 
inferred (predicted) phenotypic differences and the observed differences for 
anthropometric traits, or known prevalence differences in the case of disease 
traits, supports the approach taken here” (p. 1525-6), despite concerns raised in 
the literature. The regression plot is shown in Figure 6. The number of individuals 
in each SIRE group is represented by the size of the associated data point.    

 

 

Figure 6.  Regression plot of eduPGS and NIHTBX scores for the 17 largest SIRE 
groups in the ABCD sample, with SIRE group sample sizes represented by the 
size of the data points. 
 

Next, we include the PGS in the model, starting with Model 3 from Table 5. 
Comparing Model 3 and Model 4 (which adds eduPGS) of Table 7, we see that 
eduPGS explains a substantial portion of the residual effect of African and 
Amerindian ancestry after controls for SES.  
 
 Table 7.  Regression results for the effect of eduPGS and ancestry on cognitive 
ability in the full sample. Shown are the beta coefficients (b) and p-values (p) from 
the mixed effects models with recruitment site and family common factors treated 
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as random effects. The values in parentheses are standard errors. The marginal 
and conditional R2 are provided at the bottom.  
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We also examine the individual SIRE subsample results for eduPGS. The 
model adds eduPGS to the respective Model 4s for each SIRE group (i.e., the 
model with potential environmental factors included). The full results are provided 
in the Supplementary File. These results are summarized in Table 8. Specifically, 
Table 8 shows the effects for Amerindian and African ancestry on g with possible 
environmental controls. These come from the fourth models of Tables 2, 3, 4, and 
S8 and the third model from Table 5. It next shows the effects when eduPGS is 
added. As seen, eduPGS accounts for a portion of the ancestry by g association 
in all SIRE subsamples.  

 
Table 8.  Effects (b) of Amerindian and African ancestry on g in multi-level models 
with environmental controls (Model 4/3), and multi-level models with 
environmental controls and eduPGS (Model 5). 

  Amerindian African 

Black 
Model 4 -3.46 -0.89 

Model 5 -3.15 -0.69 

Hispanic 
Model 4 -0.86 -0.58 

Model 5 -0.55 -0.16 

Other 
Model 4 -1.09 -1.08 

Model 5 -0.55 -0.48 

White 
Model 4 -0.96 -0.85 

Model 5 -0.65 -0.32 

Full 
Model 4 -0.86 -0.79 

Model 5 -0.58 -0.40 

 
It is conceptually possible that our eduPGS are just capturing global ancestry 

effects. Our ancestry components are based on more SNPs. Moreover, they are 
not weighted by trait-associations which will attenuate the association with 
ancestry. As such this is unlikely. However, to test this possibility we created 
pseudoPGS. To do so, we used PLINK v1.90b6.8 to select random sets of 8,898 
variants to match the eduPGS. Then we randomly assigned the eduPGS beta 
weights (from Lee et al., 2018) to the respective sets of SNPs. 

Following this procedure, we create 10 pseudo eduPGS scores. This 
procedure produced PGS with the same set of SNPs as the SNPs used to 
calculate genetic ancestry, but randomized trait-association information. The full 
results are provided in Supplementary File 3, Table S17. Unlike the real PGS, 
these pseudoPGS had no validity independent of genetic ancestry. This is 
because of the random assignment of eduPGS betas to the SNP frequencies 
resulting in poor indices of ancestry. Generally, we conclude that PGS will not 
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necessarily capture effects of global ancestry. This finding suggests that our 
eduPGS are in fact capturing causal genetic effects on g both within and between 
ancestries. 

 
Discussion 

Genetic ancestry measures provide very powerful scientific value in studying 
SIRE differences in g. Using ancestry allows one to examine how the trait varies 
by genetic ancestry within self-identified racial and ethnic groups. Doing so offers 
a potential solution to the problem of decomposing genetic and environmental 
variance (Halder et al., 2015). Admixture regression has been widely applied to 
medical and behavioral traits. This includes type 2 diabetes (Cheng et al., 2013), 
asthma (Salari et al., 2005), blood pressure (Klimentidis et al., 2012), and sleep 
depth (Halder et al., 2015). Admixture regression has a natural application to 
studying g. 

Here we apply this technique to examine SIRE differences in g. We find that 
African and Amerindian ancestry are strongly negatively associated with general 
cognitive ability among African, Hispanic, and other American subsamples. This 
replicates previous research which showed that genetic ancestry predicts 
cognitive ability, independent of socioeconomic status and phenotypic 
discrimination variables which are the usual suspects (Kirkegaard et al., 2019; 
Lasker et al., 2019; Warne, 2020). The importance of such analyses within SIRE 
groups is that they shed light on the cause of g differences between SIRE groups 
with respect to similarities in developmental processes (Rowe, Vazsonyi & 
Flannery, 1994).  

The ancestry effects are consistent in direction across subsamples and hold 
after controlling for a wide array of economic and social factors, including migrant 
status, SIRE, ethnic attachment, measures of discrimination, phenotypic indices 
of race, and general SES. These results suggest that African, Hispanic, and other 
groups have inherited alleles from their African and Amerindian ancestors which 
make them liable to lower levels of g. In fact, as seen in Table 5 (Model 2), 100%, 
76%, 81%, and 100% of the respective Black, Native American, Other, and 
Hispanic SIRE effects were explained by genetic ancestry. This association 
between genetic ancestry and g suggests a partial genetic basis for observed 
SIRE differences. 

This inference is supported by additional findings based on the eduPGS 
analyses. These polygenic scores were found to be predictive of g within SIRE 
groups controlling for the first 20 principal components and for ancestry. 
Moreover, they explain a substantial portion of the ancestry effects both in the full 
sample and all subsamples. Also, they were almost perfectly correlated with SIRE 
group means in cognitive ability (r = .93). The most parsimonious explanation for 
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this, given the apparent absence of obvious forms of confounding (Fuerst et al., 
2021), would seem to be that eduPGS are capturing causal effects of genes on g 
both within and between ancestry groups and thus also SIRE groups. Firm 
conclusions, though, will require a better understanding of the relation between 
polygenic scores and ancestry (Lawson et al., 2020; Fuerst et al., 2021). 

It is worth emphasizing that our g scores were from a confirmatory factor 
model in which strict factorial invariance (SFI) held between SIRE groups. SFI 
entails that the differences between SIRE groups have the same psychometric 
meaning as the differences between individuals within these groups (i.e., the 
scores are psychometrically unbiased). Moreover, SFI implies that the causes of 
group differences are a subset of the causes of the individual differences within 
groups (Lubke et al., 2003; Dalliard, 2014). In this sample of children, individual 
differences in general cognitive ability are largely due to genes (Freis et al., 2020).  

It should be noted that the polygenic scores represent genetic variation that 
is caused by common alleles, not genetic variation that is caused by rare alleles 
under mutation-selection balance. The causal alleles that are tapped by polygenic 
scores are ancient. Most were already polymorphic 60,000 years ago when 
people left Africa and spread all over Eurasia. Today’s racial allele frequency 
differences are the cumulative effects of selection and genetic drift acting over 
more than 2,000 generations, while rare variants under mutation-selection 
balance are much younger, no more than one or two millennia or even less. 
Therefore it is predictable that genetic race differences that evolved over a long 
time are differences in polygenic scores but not necessarily differences in 
mutational load. The latter are the result of strength of selection during the last 
centuries.  

Overall, the results suggest that genetic variants related to general cognitive 
ability vary between source genetic populations and have a causal effect on 
intelligence. Because individuals within SIRE groups differ in their proportion of 
African, European and Amerindian ancestors, general cognitive ability varies by 
genetic ancestry within SIRE groups.  

 
Limitations 

This study advances over previous studies in that we used a diverse national 
sample, a good measure of g, multiple indices of racial discrimination including 
multiple race-associated phenotypes, and a composite index of SES based on 
seven different indices. Moreover, our multilevel model controlled for the effects 
of geography. Unfortunately, our index of skin color was imperfect. However, it 
seems unlikely that skin color discrimination is a significant immediate cause of g 
differences among 9-10 year old children. Such color discrimination explanations 
usually propose labor market based discrimination (Hersch, 2011), which would 
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be captured by our index of SES. Regardless, admixture-regression results can 
only provide indirect evidence for a genetic hypothesis because there could be 
unmeasured environmental factors that are related to both ancestry and cognitive 
ability.  

While the results also show that educational and intelligence-related 
polygenic scores can account for some of the effects of ancestry on g, these 
results are only tentative. It is not certain that these PGS are capturing genetic 
effects, at least between ancestries (Fuerst et al., 2021). Thus these results do 
not provide definitive evidence for a genetic hypothesis. However, following the 
methodology of genetic epidemiology, admixture regression analyses are just a 
first step in elucidating the genetic and environmental causes of group 
differences.  
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