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General Article

Psychological research that uses observational or 
quasiexperimental designs can benefit from statistical 
control to remove the effect of third variables—variables 
other than the target predictor and outcome—from an 
estimate of the causal effect that would otherwise be 
confounded (Breaugh, 2006; McNamee, 2003).1 Statistical 
control can lead to more accurate estimates of a causal 
effect (Pearl, 2009), but only when the right variables 
are controlled for (Rohrer, 2018).2 Although controlling 
for third variables is common practice (Atinc et al., 2012; 
Bernerth & Aguinis, 2016; Breaugh, 2008), the selection 
of these variables is rarely justified on causal grounds.

In this article, we illustrate that controlling for an 
inappropriate variable can result in biased causal esti-
mates. We begin with a brief introduction to causal infer-
ence and regression models, a definition of statistical 
control, and a description of situations in which statisti-
cal control is useful for researchers. We then highlight 
the pervasive issues that surround how control variables 
are typically selected in psychology. We outline the 
assumptions required to justify controlling for a third 

variable—most importantly, that the control variable is 
a plausible confounder or lies on the confounding path. 
Next, we discuss the consequences of controlling for 
other types of third variables, including mediators, col-
liders, and proxies. We then discuss how longitudinal 
data can be used to deal with more complex models. 
Using an applied example, we provide practical recom-
mendations for applied researchers who work with 
observational data who wish to use statistical control to 
bolster their causal interpretations.

A Brief Introduction to Causal Inference

In this section, we provide a very brief introduction to 
the field of causal inference, including key concepts and 
definitions that are relevant for the present article. The 
field of causal inference expands far beyond what we 
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can cover here. We direct interested readers to Dablander 
(2020) for a slightly lengthier introduction and to Pearl 
et al. (2016) or Peters et al. (2017) for book-length 
introductions.

Causal inference involves estimating the magnitude 
of causal effects given an assumed causal structure. We 
use Pearl’s (1995) definition of causality, namely, that X 
is a cause of Y when an intervention on X (e.g., setting 
X to a particular value) produces a change in Y. A causal 
effect—the expected increase in Y for a 1-unit interven-
tion in X—is identified when it is possible to derive an 
unbiased estimate of the causal effect from data. Estimat-
ing the magnitude of causal effects is key to understand-
ing psychological phenomena; however, causal inference 
relies on theoretical assumptions that come from prior 
knowledge in addition to statistical information. Identify-
ing a single causal effect requires accounting for and 
removing confounding effects without inducing spurious 
effects. Thus, although it is common practice in psycho-
logical research to estimate and interpret multiple coef-
ficients simultaneously (e.g., using a regression model 
with six predictors), we focus on the identification of a 
single causal effect at a time using a tool called a directed 
acyclic graph (DAG).

A DAG depicts hypothesized causal relations between 
variables (for a detailed introduction to DAGs in psychol-
ogy, see Rohrer, 2018). The DAGs used throughout this 
article contain three features: capital letters that represent 
variables; the letter U, which represents a set of unmea-
sured variables; and arrows that represent causal effects. 
For example, Figure 1 (left) depicts that X is a cause of 
Y, Z, and, indirectly, V (X affects V through the mediating 
variable Z), and there is an unmeasured common cause 
that affects both V and W.3 We use DAGs to represent 
causal relations in the population, and in the same way, 
researchers can use DAGs to encode hypothesized causal 
systems and to inform decisions about which statistical 
models enable the identification of a causal effect. Note 
that DAGs are nonparametric; that is, they do not require 
any particular functional form. However, throughout this 
article, we assume that all causal effects are linear and 
that each variable has a normally distributed residual.

In a DAG, a path is a sequence of arrows that con-
nects one variable to another. A path that contains two 

variables will transmit association (i.e., the path results 
in the two variables being associated) unless there is an 
inverted fork (i.e., two arrowheads coming together; e.g., 
X → Y ← W) anywhere along the path. Each pair of 
variables may be connected by multiple paths, and if 
one of these paths transmits an association, then the pair 
of variables is expected to be associated.4 In Figure 1 
(left), X and Y are connected by two paths: X → Y and 
X → Z → V ← U → W → Y. The latter path does not 
transmit association because of the inverted fork, Z → 
V ← U. But the path X → Y does transmit association, 
and thus, we expect X and Y to be associated in sample 
data drawn from a population represented by this causal 
graph.

The association information embedded in DAGs can 
help researchers discover potential threats to identifying 
a causal effect. We use “bias” to mean the discrepancy 
between a population parameter (e.g., a population 
regression coefficient) and the causal effect. In Figure 1 
(right), there are two paths that connect X and Y and 
transmit association—both paths contribute to the asso-
ciation between X and Y. Crucially, one path, X ← C → 
Y, is noncausal, that is, it is not part of the causal effect 
of X on Y, so manipulating X does not change C or Y 
through C. Thus, the association between X and Y is a 
biased estimate of the causal effect. In general, a com-
mon cause (i.e., a confounder) of a predictor and an 
outcome results in an association that is biased for the 
causal effect. To remove this bias, the common cause 
path (in this case, the path through C) must be removed 
from the estimated association. This can be done through 
an experimental research design in which the predictor 
is randomized (Greenland, 1990), but experimental 
manipulation of psychological variables is often unfea-
sible. Thus, psychologists have had to find another 
method to block confounding paths. One such method 
is statistical control, which can be accomplished via 
regression (McNamee, 2005).

Linear Regression and Statistical Control

In this section, we review how multiple linear regression 
produces coefficients that represent the linear associa-
tion between each predictor and the outcome variable, 
conditional on the set of other predictors. To simplify 
the presentation, we assume all variables are standard-
ized (means = 0, variances = 1). The linear regression 
model formulates an outcome variable,Y, as a linear 
function of a set of p predictor variables, X X p1, . . . , , 
plus a normally distributed residual with mean 0:

Y X X Xp p= + + + +β β β ε1 1 2 2 ... .

In simple regression ( p = 1), β1 is equivalent to the 
correlation between X1 (which for simplicity we denote 
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Fig. 1.  Directed acyclic graphs (DAGs). (Left) An example DAG with 
one unmeasured variable, U. (Right) A simple example of confounding.
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as X in the p = 1 case) and Y  (when all variables are 
standardized). Likewise, when p > 1  and all predictors 
are perfectly uncorrelated with each other, then the β 
for each predictor is equal to the correlation between 
that predictor and the outcome. In these special cases, 
each β reflects the total linear association between the 
predictor and Y  and can be interpreted as the expected 
change in Y for a 1-unit change in X.

When the predictors are correlated with each other, 
the estimation and interpretation of regression coeffi-
cients are more complicated. In these cases, the variance 
shared among predictors gets partitioned among the 
regression coefficients such that each regression coef-
ficient represents the expected change in Y for a 1-unit 
increase in X, holding all other predictors fixed. Con-
ceptually, this approach is the statistical equivalent of 
sampling participants who have the same value on all 
but one of the predictors and estimating the association 
between that one predictor and Y in the sample. Thus, 
multiple regression coefficients are known as partial 
regression coefficients because they represent the iso-
lated association between a single X and Y when none 
of the other predictors are changing. If the predictors 
other than X represent the full set of variables that con-
founds the X-Y association and if there is no reverse 
causality (i.e., Y does not cause X), then the causal effect 
(X → Y) is identified using the partial regression 
coefficient.

Figure 2 illustrates statistical control. The scatterplot 
on the left shows a strong linear association between X 
and Y, and the color of the points in this plot represents 
values of a third variable, C. C is correlated with both X 
and Y, which raises the possibility that it may be a con-
founder. The middle plot shows the population-level 
regression lines that one would get if it were possible 
to compute the simple regression coefficient of Y on X 
for each subpopulation with a fixed value on C. In prac-
tice, however, there is not enough information in this 
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Fig. 2.  Visualizing statistical control. (Left) The confounded regression of Y on X reveals a strong linear association. The color of 
individual points represents their values on the confounding variable, C. (Middle) Within each level of C, the association between X 
and Y is 0. (Right) When C is included as an additional predictor in the regression equation of Y on X, its confounding influence is 
removed to reveal only the partial association between X and Y. X.C is the residual scores that are obtained when X is regressed on C.

small data set to accurately estimate the regression coef-
ficient within each subpopulation sample. The plot on 
the right shows the statistical approach to do this, that 
is, the deconfounded association between X and Y. The 
x-axis now represents the residuals that are obtained 
when X is regressed on C, that is, the part of X that is 
independent of C (X C X C= +β1 . ). When Y is regressed 
on this residualized predictor, Y X C= +β ε2 . , there is 
little remaining relation between X.C and Y, and β2 is 
close to 0. Adding the control variable C to the regres-
sion of Y on X, Y X C= + +β β ε2 3 , is equivalent to regress-
ing Y on the residualized X—the value of β2 is the same 
in both equations.

By statistically controlling for the correct variable, a 
confounding effect can be removed from an estimate, 
which makes statistical control a valuable tool for 
researchers who are interested in causal inference and 
have access to observational or quasiexperimental data 
(Morabia, 2011; Pourhoseingholi et al., 2012). Here, we 
focus on controlling for the correct variable or variables, 
but obtaining an unbiased association depends on sev-
eral additional assumptions: (a) Any interactions or non-
linear effects must be specified correctly (Cui et al., 2009; 
Simonsohn, 2019), (b) the predictor and control vari-
ables must be measured without error or a model that 
deals with the measurement error must be used (Savalei, 
2019; Westfall & Yarkoni, 2016), and (c) the relevant 
variables must be measured at a time when the causal 
process can be captured.5

Causal inference is not the only reason that a 
researcher may choose to control for a third variable. 
Controlling for a variable that shares variance with the 
outcome but not the predictor will decrease the amount 
of residual variance in the outcome, which, in turn, low-
ers the standard error of the estimated regression coef-
ficient and increases power (Cohen et al., 2003). Control 
variables are also sometimes used to establish that a new 
measure is uniquely predictive beyond some already 
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established measure (Wang & Eastwick, 2020; we discuss 
this practice later in the paper). Researchers may also 
be interested in using the partial regression coefficients 
to describe partial associations rather than using them 
to explain psychological processes.

Frequently, however, researchers aim to develop and 
test theories of psychological processes, and this 
endeavor almost always involves making and testing 
causal hypotheses. Although it is rare that causal infer-
ence is explicitly acknowledged as the goal in nonex-
perimental studies (Grosz et al., 2020), a key component 
of theory building is proposing a set of principles that 
explains a process and then formulating a model based 
on these principles (Borsboom et al., 2021)—in other 
words, positing a set of causal hypotheses (Shmueli, 
2010; Yarkoni & Westfall, 2017). When coefficients are 
interpreted as reflecting the strength of a causal effect, 
then selecting and controlling for the correct variable is 
of the utmost importance because controlling for the 
wrong variable can increase rather than decrease bias.

Common Practices: How Do Researchers 
Typically Choose Control Variables?

Reviews of published studies in psychology journals 
have found that more than 50% of the studies reviewed 
gave no justification for the inclusion of specific control 
variables (Becker, 2005; Bernerth & Aguinis, 2016; 
Breaugh, 2008). Moreover, Atinc and colleagues (2012) 
and Carlson and Wu (2012) noted that when researchers 
did justify their control variables, they typically did so 
by noting the statistical association between the predic-
tor and the control (e.g., the predictor and third variable 
correlate at .40, so it is appropriate to control for the 
third variable).

Psychological researchers also receive relatively little 
helpful advice about what constitutes strong evidence 
for inclusion of a control variable in their area of 
research. The available advice is often too vague (e.g., 
“offer rational explanations, citations, statistical/empiri-
cal results, or some combination”; Becker, 2005, p. 278), 
too minimalistic (e.g., use a theoretical model to moti-
vate control variable selection; Breaugh, 2006), or is of 
little practical use (e.g., provide evidence that control 
variables are accomplishing their intended purpose; 
Carlson & Wu, 2012). The handful of articles that have 
focused more specifically on the need to explicate rela-
tions between the control, predictor, and outcome pro-
vide some helpful guidance, but it can be difficult to 
know how to implement this guidance in one’s own line 
of research. For example, Meehl (1970) noted that con-
trols should not be automatically considered exogenous, 
and instead, researchers must consider the possibility 
that other important variables in the model—the predic-
tor or outcome—might affect the control. In addition, 

others have argued that researchers should outline the 
theory behind their decision to include/exclude control 
variables (Berneth & Aguinis, 2016; Edwards, 2008). 
However, on their own, these calls to integrate theory 
may be difficult to implement. Fortunately, recent work 
on the importance of causal language and causal think-
ing in psychology (Dablander, 2020; Grosz et al., 2020; 
Rohrer, 2018) suggests that one way to implement these 
calls for proper control variables is to give more consid-
eration to how control variables are causally linked to 
the other variables in the model.

As we show in the coming sections, when a central goal 
of a regression analysis is to learn about a process, the 
only way to qualify a variable as a good control is to 
consider the causal model that connects the control, pre-
dictor, and outcome. In the following sections, we show 
how, depending on the causal status of the third variable 
and the strength of its causal relations with both the pre-
dictor and outcome, controlling for the third variable can 
either remove or add substantial bias to the estimate of 
the causal effect. In doing so, we present a framework for 
principled control variable selection and justification.

One Step Forward, Two Steps Back: 
Controlling for the Wrong Variable

Although it is possible to remove bias from an estimate 
of a causal path by controlling for a confounding vari-
able, it is also easy to add bias to an estimate by control-
ling for a variable that is either not a confounder or does 
not block a confounding path (VanderWeele, 2019). In 
the following paragraphs, we describe different kinds of 
variables and discuss the consequences of controlling 
for each. Our goal is not to give a comprehensive list of 
all variables that one might possibly control for (for a 
more comprehensive list of “good” and “bad” control 
variables, see Cinelli et al., 2020) but, rather, to under-
score how the impact of statistical control depends on 
the type of control variable. Figure 3 depicts eight types 
of third variables (C) that differ in their causal relation 
to the predictor (X) and outcome variable (Y). Figure 3a 
shows a confounder, and Figures 3b and 3c show two 
“confound-blockers,” all of which can remove bias when 
controlled for.6 Figures 3d through 3h show colliders, 
mediators, and a proxy, all of which are problematic 
when controlled for (Cinelli et al., 2020; Elwert & Winship, 
2014; Pearl, 2009; Rohrer, 2018).

Confounder and confound-blocker

A confounder is a variable that is a (direct or indirect) 
cause of both X and Y (see Fig. 3a).7 By controlling for 
a confounder, one can block the confounding path  
that obscures the causal effect of X on Y. But it is also 
possible to block the confounding path by controlling 
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for any other variable that lies on that path. We call such 
a variable a confound-blocker because it is not itself a 
confounder, but controlling for it nevertheless blocks 
the confounding path. For example, to estimate the 
causal effect of coffee on concentration, it may be impor-
tant to control for the confounding effect of sleep 
(because less sleep may lead to both greater caffeine 
consumption and lower concentration). This confound-
ing path can be blocked either by measuring and con-
trolling for the confounder itself—hours of sleep—or by 
measuring and controlling for another variable along the 
confounding path (e.g., desire for coffee). In Figures 3b 
and 3c, the confounder is unmeasured, but controlling 
for C, a confound-blocker, debiases the association.

Collider

When two variables share a common effect, the common 
effect is called a collider between that pair of variables 
(Figs. 3d and 3e). For example, both IQ and hard work 
can result in getting accepted to college, so college-
student status is a collider between IQ and hard work 
(Elwert & Winship, 2014; Rohrer, 2018). Controlling for 
a collider will induce a spurious (i.e., noncausal) associa-
tion between the variables that are causes of the collider. 
For example, if regressing hard work on IQ produced a 
simple regression coefficient of zero, controlling for col-
lege-student status (which is positively affected by both 
hard work and IQ) would induce a spurious negative 
effect between these variables. A variable that is a col-
lider for a pair of variables other than the outcome and 
predictor can still bias the target causal estimate. Because 
controlling for a collider induces a spurious association 
between its causes, this can transform a path between 
the predictor and outcome from a path that does not 
transmit association to a path that does. For example, in 

Figure 3e, C is a collider for X and U. When C is not 
controlled for, the noncausal path from X to Y (X →  
C ← U → Y) does not transmit an association because of 
the inverted fork (X → C ← U). But controlling for  
C induces a spurious association between X and U, and 
the new noncausal path from X to Y (X – U → Y, where 
X – U denotes a spurious association) now transmits 
association, which results in a biased causal estimate.

Mediator

A mediator is a variable that is caused by X and is a 
cause of Y (Figs. 3f and 3g; Baron & Kenny, 1986; Hayes, 
2009; Judd & Kenny, 1981). For example, sleep problems 
might mediate the relation between anxiety and tired-
ness such that sleep problems are a mechanism by which 
anxiety increases tiredness. If a researcher is interested 
in the total effect of the predictor (X → Y plus X →  
C → Y) on the outcome (compared with only the direct 
effect, X → Y), then controlling for a mediator will 
undermine this effort by blocking one causal path of 
interest. Even if a researcher is interested only in the 
direct effect, controlling for a mediator could induce bias 
if the mediator and the outcome share a common cause 
(Fig. 3g). When such a common cause exists, the media-
tor is a collider for the predictor and this common cause, 
and because the mediator is being conditioned on, the 
noncausal path, X – U → Y, now transmits association 
and biases the estimate (Rohrer et al., 2021).

Proxy

A proxy is caused by X and has no causal relation to Y 
(Fig. 3h; Pearl, 2009). Note this does not mean the proxy 
is a good or sensical measure of the predictor. For exam-
ple, grade point average (GPA) and number of cars 

A. Confounder B & C. Confound-Blocker D & E. Collider

F & G. Mediator H. Proxy
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Fig. 3.  Example causal models.
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owned might be proxies for cognitive ability such that 
cognitive ability is a cause of GPA and (indirectly via 
income) cars owned. The number of cars owned, how-
ever, is likely a poor measure of cognitive ability.

If the predictor is a perfectly reliable variable (i.e., X 
contains no measurement error), controlling for a proxy 
will not affect the X → Y path: The regression coefficient 
of X will capture the causal effect, and the coefficient of 
the proxy regressed on the outcome will be zero (in the 
population). But if X is in fact an unreliable measure of 
the true causal variable (e.g., cognitive ability is mea-
sured with a test that is not perfectly reliable), then con-
trolling for a proxy will attenuate the estimated causal 
path of interest. This attenuation effect arises because 
the proxy can be understood as a second unreliable 
measure of the same underlying predictor (e.g., GPA and 
the unreliable cognitive ability test are both measures of 
cognitive ability). When both the predictor and control 
variable are unreliable measures of the same construct, 
the true predictive effect of the construct gets partitioned 
into two coefficients, neither of which capture the full 
causal effect. The magnitude of the attenuation depends 
on the strength of the paths from the true (latent) predic-
tor to the measured predictor and to the proxy.

Inappropriate Control Leads to Bias: 
Demonstrating the Importance of the 
Causal Structure

In the following section, we demonstrate how the causal 
structure influences the partial regression coefficients. 
Each figure displays the consequences of controlling for 
a third variable given a range of hypothetical population 
models. We used path tracing (i.e., Wright’s rules; Alwin 
& Hauser, 1975; see Appendix A for an example) to 
obtain a population correlation matrix for each causal 
structure and calculated regression coefficients from 
each population correlation matrix using the formula 
β Σ Σ= −

xx xy
1 , in which Σxx is the p p×  correlation matrix 

of predictors and Σxy  is a p×1 vector that contains cor-
relations between each predictor and the outcome.8 We 
compare the partial regression coefficient (when a vari-
able is controlled for) with the simple regression coef-
ficient (when no other variables are controlled for). We 
show the population values of simple and partial regres-
sion coefficients under three of the causal structures 
depicted in Figure 3: when the third variable is a (a) 
confounder, (b) mediator, and (c) collider for the predic-
tor and outcome (see Appendix B for results from all 
models shown in Fig. 3). We assume, for the time being, 
that all variables are measured without error (in the sec-
tion, Measurement Error Makes Proxy Variables Prob-
lematic, we relax that assumption and look at the impact 
of controlling for a proxy). For each population model, 
the direct effect of X on Y is set at .15, and the direct 

effect between C and Y is set at .5 (these are standard-
ized values). The direct effect between X and C varies 
to demonstrate the variability of the bias within a popu-
lation model.

Results are shown in Figure 4. The top row shows the 
effect of failing to control for a confound: The yellow line 
depicts the effect of X on Y (which accurately estimates 
the causal effect), controlling for the confounder C, 
whereas the green line depicts the overestimated or 
underestimated value when C is not controlled for. The 
second and third rows of Figure 4 show two situations in 
which controlling for a nonconfounder introduces bias. 
When the control variable is a mediator, as the absolute 
strength of the effect of X on C increases, the total causal 
effect increases as well, but the partial coefficient remains 
the same, which results in an increasing discrepancy 
between the coefficient and the causal effect. When the 
control variable is a collider for the predictor and outcome 
variables, as the absolute strength of the effect of X on C 
increases, the discrepancy between the simple and partial 
coefficients increases as well. Note that the direction of 
the bias that arises when controlling for a collider or a 
mediator depends on the parameters of the model. With-
out knowing the true causal effect values (and we may 
safely assume that these are unknown!), the impact of 
controlling for a nonconfounder is unpredictable. Thus, 
if researchers are unsure whether the variable that they 
plan to control for is a confounder or a variable that 
blocks the confounding path, they should not interpret 
the resulting partial coefficient as a conservative approxi-
mation of the true causal effect.

Measurement error makes proxy 
variables problematic

Measurement error can further muddy the interpretation 
of controlled regression coefficients. In the presence of 
measurement error, simple regression coefficients (con-
founded or not) will be attenuated (Shear & Zumbo, 
2013), and controlling for an imperfectly measured 
confound may not remove its full confounding effect 
(Westfall & Yarkoni, 2016). Figure 5 shows results from 
the same series of three models as Figure 4 plus the 
proxy model, in which both X and C have 80% reliability. 
The path values that connect each of the variables are 
kept the same as Figure 4 except that we set the direct 
causal effect of X on Y in the proxy model to .5 instead 
of .15 to more clearly show the attenuation effect that 
ensues as a result of controlling for a proxy. As Figure 
5 shows, controlling for a proxy is problematic when 
the predictor and proxy are highly correlated. As 
described earlier, when X is measured with error (so that 
the observed variable is Xm rather than X itself), Xm and 
C can be seen as two imperfect measures of the same 
true construct (with C being a much weaker measure 
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than Xm to the extent that the causal path from X to  
C is smaller than the path from X to Xm), and they each 
can account for some of the true causal effect.

Each of the causal structures in Figures 4 and 5 pro-
duces a correlation between the third variable and both 
the predictor and the outcome variable. In fact, the very 
same correlation matrix (and thus, the very same set of 
regression coefficients) could be produced by every one 
of these models. Thus, these correlations alone cannot 
reveal whether the third variable is, for example, a 

mediator or a collider for the predictor and outcome 
variable (Maxwell & Cole, 2007; Pearl, 1998). Evidence 
of a statistical association among a third variable, predic-
tor, and outcome merely implies that there is some 
causal structure that connects these variables (either 
directly or via a set of unobserved variables)—but the 
confounder structure is just one possibility among many. 
Therefore, it would be a mistake to assume that a vari-
able should be controlled for merely on the grounds that 
it is correlated with both the predictor and outcome.
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More Complicated Models and 
Longitudinal Data

In the previous section, we used simple causal structures 
to show how bias arises, but often, the true causal dia-
grams are more complicated. For instance, a causal effect 
may be confounded by a large set of variables, of which 
many are unmeasured. Measuring all confounders is not 
necessary if there is a more proximate variable through 
which many (or all) of the confounders influence the 
outcome or predictor. Controlling for such a variable 
would block all the confounding paths in which it func-
tions as a mediator (between the confounder and the 
outcome or predictor) without having to measure or 
control for the confounders themselves.

Another complicated situation is when a potential 
control variable occupies two roles. For example, a 
variable may act as a confounder between two other 
constructs if measured at one time point and a mediator 
if measured at another; however, it is not necessarily 
possible to make this distinction for the same instantia-
tion of the predictor and outcome (see Box 1). Because 
the goal of statistical control is to remove a confounding 
effect without blocking the causal effect, it is important 
for a researcher to identify and measure the control 
variable at a time when it serves as a confounder 
between the predictor and outcome rather than a time 
when it serves as a mediator. Box 1 explains in more 
detail what we mean and gives an example of how to 
do this. Likewise, if there were bidirectional causality 
between a control variable and the outcome, the control 

variable would be a confounder if measured at some 
time points and a collider for the predictor and outcome 
variables at others. When such complicated structures 
exist, it can be difficult to obtain a set of control vari-
ables that debiases a causal effect. Often, longitudinal 
data can help with this endeavor.

Longitudinal data—when the same variables are mea-
sured at multiple measurement occasions in the same 
individuals—provide information about the temporality 
of variables. These data, along with the use of longitu-
dinal models, can be used to make propositions about 
the location and direction of effects. For example, if XT1 
(the subscript denotes the measurement occasion) is 
found to predict YT2 even after controlling for previous 
measurements of Y, then X is said to Granger-cause Y. 
Granger causality depends on two criteria: (a) The 
Granger-cause precedes its effect, and (b) the Granger-
cause explains unique variation in its effect over and 
above what is predicted by a previous measure of Y 
(Granger, 1980; Maziarz, 2015). Establishing Granger 
causality is not the same thing as establishing causality, 
however (Eichler & Didelez, 2010). Effects that meet the 
definition of Granger causality may still be influenced 
by confounders because controlling for a previous ver-
sion of Y may not block all confounding paths. For 
example, in Figure 7 (left), controlling for YT1 blocks one 
of the confounding paths (XT1 ← C → YT1 → YT2) but 
not the other (XT1 ← C → YT1). Longitudinal data can 
make it much easier to control for confounders, but it 
does not negate the need to clearly justify the underlying 
causal structure (Rohrer, 2019).

Imagine a researcher is interested in the effect of student content knowledge on final grades and the 
researcher posits that the number of questions a student asks is a potential confounder for this effect. 
However, the researcher recognizes that the number of questions a student asks could also be a mediator. 
Therefore, it is plausible that (a) how much students know could influence how many questions they ask in 
class but also (b) how many questions students ask in class could also influence how much they know about 
class content. Thus, there may be bidirectional causality between the number of questions asked in class and 
the amount a student knows about class content. Figure 6 (left) shows one depiction of such a causal model. 
But this figure is misleading because it suggests that course knowledge could be a cause of questions asked 
and, in the same instantiation, questions asked could be a cause of course knowledge. This is impossible 
because causality happens across time. Thus, one of these variables—either content knowledge or questions 
asked—had to occur before the other, which excludes the previous variable from being caused by the latter 
variable. Therefore, an appropriate directed acyclic graph (DAG) should depict this bidirectional effect across 
different instantiations of content knowledge and questions asked (see Fig. 6, right). For example, knowledge 
at Week 1 of the course may be a cause of the number of questions asked in midterm week, and questions 
asked at Week 1 may be a cause of knowledge at midterm week. Specifying the DAG with different 
instantiations of the same variable allows researchers to query which causal effect they are interested in (the 
effect of content knowledge at Week 1 on final grade or the effect of content knowledge at midterm week on 
final grade) and explore which instantiation of the control variable blocks a confounding path.

Box 1.  Bidirectional Causality
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XT1 XT1XT2 XT2

YT2YT1 YT2YT1

C CT0 CT1

Fig. 7.  Examples of time-invariant and time-varying confounders. 
(Left) The confounder, C, does not change across the two measure-
ments. There are two confounding paths between XT1 and YT2: XT1 ← 
C → YT2 and XT1 ← C → YT1 → YT2. Controlling for YT1 blocks only 
the second confounding path. (Right) The confounder does change 
across measurements. Because an effect precedes its cause, the sub-
script for the first version of the confounder is 0. Again, there are two 
confounding paths: XT1 ← CT0 → CT1 → YT2 and XT1 ← CT0 → YT1 → 
YT2. Controlling for YT1 blocks only the second confounding path.

Questions
Asked

Questions
Asked

(Week 1)

U

Content
Knowledge
(Week 1)

Questions 
Asked 

(Midterm Week)

Content 
Knowledge 

(Midterm Week)

Final
Grade

Content
Knowledge

Final
Grade

Fig. 6.  Incorporating multiple instantiations of a variable into a directed acyclic graph. U represents a set of unspecified variables 
that causes both the number of questions asked and amount of content knowledge in Week 1.

Combined with a justified causal structure, longitudi-
nal data can address some complicated causal structure 
problems. First, by repeatedly measuring a pair of vari-
ables that influences each other (X → C and C → X) at 
the correct interval, the once bidirectional paths become 
unidirectional paths (e.g., XT1 is a cause of CT2, and CT1 
is a cause of XT2).

9 Second, measuring the same variables 
across time allows for the removal of a specific kind of 
unmeasured confounding, namely, time-invariant con-
founding. A time-invariant confounder (Fig. 7, left) is a 
confounder whose level and effects do not change across 
the measured time points (e.g., ethnicity—assuming the 
effect of participants’ ethnicity on the other variables in 
the model is constant across measurement occasions). 
In contrast, a time-varying confounder (Fig. 7, right)  
is a variable whose level or effect changes between 
measured time points (e.g., positive affect, relationship 
satisfaction).

One way to remove unmeasured time-invariant con-
founds is to use a fixed-effects model (Allison, 2005; 
Kim & Steiner, 2021).10 A fixed-effects model estimates 

an individual-specific intercept, which captures all 
effects that vary between but not within individuals in 
a sample (or another unit of analysis such as school or 
country). Because time-invariant confounds do not vary 
within individuals, the fixed-effects model can debias a 
coefficient for unmeasured time-invariant confounders. 
A fixed effect can be estimated by including a dummy 
variable in the regression model for each participant 
(for tutorials on estimating a fixed-effects model in R, 
see Colonescu, 2016; Hanck et al., 2019). Rather than 
controlling for a specific variable, the fixed-effects 
model simultaneously controls for all the attributes of 
individuals that do not vary over time. Although fixed-
effects models remove the effects of unmeasured time-
invariant confounders, they do not remove the effects 
of time-varying confounders. Therefore, considering 
whether time-varying confounders exist for a pair of 
variables and making a plan, if needed, to deal with 
them is still important when a fixed-effects model is 
estimated.

In summary, the causal structure must still be pro-
posed and justified even if longitudinal data are avail-
able (Hernán et al., 2002; Imai & Kim, 2016), and the 
only way to provide a valid argument that it is appropri-
ate to control for a particular variable is to discuss the 
causal structure that includes the control, predictor, and 
outcome. This argument, which should be presented 
for each control variable, can include empirical motiva-
tion (e.g., an estimated association from a previous 
study), but it must be justified on a theoretical basis 
(outlined below). This strategy aligns with advice from 
psychometricians to be conservative with the number 
of control variables (Becker et al., 2016; Carlson & Wu, 
2012) and to carefully justify each one (Bernerth & 
Aguinis, 2016; Breaugh, 2006; Carlson & Wu, 2012; 
Edwards, 2008). Of course, proposing a full causal map 
of relations among all the variables in one’s model is 
more difficult than using the default methods of 
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selecting control variables. To assist in this difficult but 
necessary endeavor, we next use an applied-research 
example to demonstrate how to decide which variables 
to control for using causal reasoning.

Using the Causal Structure to Justify 
Control Variables: An Applied Example

In this section, we outline the steps to properly justify 
control variables using causal structures. As a demonstra-
tion, we use a simplified, applied example from the 
literature on personality and work.

Selecting variables

Begin with a pair of outcome and predictor variables, 
in which the predictor variable is hypothesized to be a 
cause of the outcome.11 We chose conscientiousness, or 
the disposition to be hardworking, responsible, and 
organized, as the predictor and career success, including 
annual income, occupational prestige, and job satisfac-
tion, as the outcome. Past research supports conscien-
tiousness as a predictor of future career success (Dudley 
et al., 2006; Moffitt et al., 2011; Sutin et al., 2009; Wilmot 
& Ones, 2019). We propose that this relation exists 
because being a conscientious worker (e.g., fulfilling 
work responsibilities, being punctual, working dili-
gently) increases one’s career success.

Next, generate a list of variables that could be con-
founders or confound-blockers—the (potential) controls. 
This list should include variables that are statistically 
associated with both predictor and outcome. We con-
sidered variables that might be confounders of personal-
ity and career success and identified two—educational 
attainment and childhood socioeconomic status (SES).

Specifying and justifying the causal 
structure

With this list of potential controls, the next step is to 
specify a causal structure that includes the predictor, 

outcome, potential confounders, and other important 
third variables (for our example, see Fig. 8). For this 
step, researchers can use U to stand in for a set of non-
specific common causes. Using U as a stand-in variable 
allows researchers to reason about potential confound-
ing paths and consider how to block them even when 
the full set of confounders is unknown. After outlining 
a causal structure, each part of the structure should be 
justified. For the list of potential controls, researchers 
must justify why these variables are either confounders 
or confound-blockers of the predictor and outcome. For 
example, according to the social investment principle of 
personality, which posits that age-graded social roles 
serve as one mechanism of personality development 
(Roberts & Wood, 2006), we hypothesized that educa-
tional attainment influences conscientiousness, that is, 
engaging in the structured context of higher education 
that demands individuals to act responsibly should pro-
mote individuals to become more organized, hardwork-
ing, and responsible (i.e., more conscientious; Roberts 
et al., 2004). We also theorized that higher educational 
attainment would lead to greater career success given 
robust associations between educational attainment and 
income, unemployment, job satisfaction, occupational 
prestige, and control over work (Gürbüz, 2007; Ross & 
Reskin, 1992; Slominski et al., 2011; U.S. Bureau of Labor 
Statistics, 2020). Together, these two lines of research 
support our hypothesized structure that educational 
attainment is a plausible confounder of the causal effect 
of conscientiousness on career success.

In addition, childhood SES may also be a confounder 
or confound-blocker for conscientiousness (mediated by 
educational attainment) and career success because chil-
dren from families with higher incomes and more highly 
educated parents are, themselves, more likely to achieve 
higher levels of educational attainment and have higher 
paying and more prestigious jobs (National Center for 
Education Statistics, 2019; The Pell Institute, 2018). These 
causal hypotheses are depicted in Figure 8 (left). Of 
course, any of these hypotheses about the causal struc-
ture may be wrong. The value of this framework, how-
ever, lies in the clear outlining of assumptions and 

Childhood
SES

Educational
Success

Conscientiousness Career
Success

Childhood
SES

Educational
Success

Conscientiousness Career
Success

Fig. 8.  Considering alternative structures: educational attainment as a confounder or a mediator.
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hypotheses and, in turn, the consequences that arise if 
these assumptions are wrong.

Researchers should also justify why each control vari-
able will not bias the estimate by blocking a causal path 
(i.e., it is not a mediator) or inducing a spurious path. 
In most research studies, there will be uncertainty about 
parts of the causal structure (e.g., a variable may be a 
plausible confounder and also a plausible collider for a 
pair of variables). These uncertainties can be depicted 
by having multiple competing models—a set of plausible 
causal structures. In our example, there is reason to 
believe that educational attainment might be a mediator 
between conscientiousness and career success, although 
it is unlikely to be a proxy or a collider.12 That is, con-
scientiousness may be a cause of educational attainment 
(because being dispositionally hardworking and reliable 
causes people to do better in school and receive more 
opportunities to further their education; Göllner et al., 
2017), and higher educational attainment, in turn, causes 
career success. Childhood SES, however, could be nei-
ther a mediator nor a collider for conscientiousness and 
career success because events that occur in adulthood 
do not change events that happened in childhood. 
Therefore, we propose that we have a clear confounder—
childhood SES—and one variable that could be a con-
founder and/or a mediator—educational attainment.

Comparing alternative models and 
selecting control variables

With a set of plausible causal structures, the next step 
is to select an appropriate set of control variables, which 
should block all confounding paths without blocking 
any causal paths or inducing any spurious associations 
between the predictor and outcome. This appropriate 
set of control variables need not contain every con-
founder—sometimes all confounding paths can be 
blocked with a subset of the confounders.

With a set of appropriate controls for each plausible 
model, researchers will end up in one of three positions. 
First, there may be a set of control variables that is 
appropriate across all plausible models. In this case, the 
researcher can argue that the value of the partial coef-
ficient is a more accurate estimate of the hypothesized 
causal path than the simple coefficient. Researchers who 
interpret their estimated association causally must make 
it clear to readers that the causal interpretation of the 
results is predicated on the specified model being true 
and the assumptions outlined previously (see Statistical 
Control: How and When It Works section; e.g., all non-
linear and interaction effects are correctly specified). 
Second, researchers may find that the appropriate set of 
control variables varies across the set of plausible mod-
els. In this case, researchers could select a single model 
and control for its corresponding control set and discuss 

how the interpretation of the results depends on the 
chosen structure being true. Here, the alternative models 
should be included in the article along with their associ-
ated control sets. Alternatively, researchers could run 
separate models that control for each of the appropriate 
control sets and present the partial associations from 
each model along with a discussion of the assumptions 
that have to hold for each of these coefficients to be 
unbiased for the causal effect. Researchers may also 
consider conducting a sensitivity analysis to investigate 
which effects hold up to control by various possible 
confounders, keeping in mind that without making 
assumptions about the causal model, there is no basis 
to claim that partial effects are more or less “conserva-
tive” than simple effects. Finally, researchers could be 
in a position in which one or more of the models have 
no appropriate control set. When this is the case, 
researchers may consider blocking the confounding paths 
through some other method (e.g., instrumental variables 
or front-door criterion; Pearl, 1995), reporting the simple 
coefficients, or reporting the partial coefficients with an 
acknowledgment that not all of the confounding paths 
are blocked. These recommendations are summarized in 
Table 1.

When reporting partial coefficients, there are some 
practices researchers should always follow. First, both 
the simple and partial coefficients should be made acces-
sible to the reader; not providing access to both sets of 
coefficients leaves the reader without valuable informa-
tion about how statistical control affects the estimates. 
In addition, it is important to stress that the coefficient 
that relates the outcome to the predictor and the coef-
ficients that relate the outcome to the controls cannot 
generally be interpreted in the same way because control 
→ outcome coefficients represent direct (rather than 
total) effects and may themselves be confounded13 
(Westreich & Greenland, 2013).

In our example, because educational attainment may 
serve as either a mediator or a confounder, we must con-
sider and discuss the consequences of both causal models 
(see Fig. 8). If educational attainment is a confounder, 
then controlling for educational attainment would block 
the two confounding paths. Instead, if educational attain-
ment is a mediator, then controlling for educational attain-
ment not only blocks a causal path but also induces a 
spurious path (because of Conscientiousness → Educa-
tional Attainment ← Childhood SES). Thus, if educational 
attainment is a mediator, controlling for childhood SES is 
the correct approach. If longitudinal data were available, 
then it could be possible to distinguish educational attain-
ment as a confound from educational attainment as a 
mediator. Longitudinal data would also allow fixed effects 
to be estimated, which would remove time-invariant con-
founding by controlling for all fixed person-level attri-
butes. Another way to disentangle whether a variable is 
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a confounder or a mediator is to take a more nuanced 
view of each of the variables (see Box 2).

Discussion

In this article, we demonstrated the importance of care-
fully selecting control variables. In particular, we high-
lighted how controlling for the wrong variable can lead 
researchers to results and interpretations that are less 
accurate than if no variables had been controlled. Fur-
thermore, we showed that the underlying causal struc-
ture determines whether controlling for a variable adds 
or removes bias. In addition, we clarified that statistical 
associations are not sufficient justification for selecting 
a control variable because these associations could arise 
from a number of different causal structures.

Throughout this article, we discussed estimating the 
weights of causal paths and how these weights can be 
biased by controlling for the wrong variable (researchers 

may also be interested in establishing incremental validity; 
see Box 3 for a discussion of this practice). But this frame-
work is important even for researchers who are interested 
only in assessing whether a causal effect exists (rather 
than estimating the weight of that causal effect). In this 
case, the researcher may not be concerned whether the 
weight of the causal path is an underestimate (or overes-
timate) as long as the results indicate that there is a non-
zero causal path between the two variables. There are two 
reasons why the causal structure is important even if the 
existence, rather than the weight, of a causal effect is the 
focus. First, controlling for the wrong variable can, in some 
situations, entirely remove the effect of interest. In particu-
lar, if the impact of X on Y is mainly mediated by a third 
variable and that mediator is controlled for, the association 
between X and Y can be reduced to (or very near to) zero, 
which leads to the relation being mistakenly dismissed as 
unimportant. The same thing can happen if a spurious 
association that biases the effect of interest is induced 

Table 1.  Guidelines for Controlling After Justification Process

Result of causal structure reasoning Suggested approach

A single control set is appropriate 
across the plausible models

•  Control for the control set
•  List assumptions that the causal interpretation is predicated on

Different control sets are appropriate 
across plausible models

•  Control for one of the control sets
• � Discuss how the interpretation of the coefficient depends on the selected model  

being true
    Or
•  Run multiple models with different control sets
•  Present results from different models as competing estimates

No control set • � Use another method to debias effects (e.g., instrumental variables)
    Or
•  Report simple coefficients
    Or
• � Report partial coefficients with an acknowledgment that it is a biased coefficient

Figure 8 depicts directed acyclic graphs (DAGs) that include variables that are amalgams of complex 
processes that unfold across time (e.g., educational attainment). Collapsing over a variable can be 
useful, but it can also create ambiguity when debiasing a causal effect. One way to disambiguate this 
process is by specifying each variable’s content and timescale (see Fig. 9). For example, educational 
attainment could be broken down into multiple parts—being a college attendee, engaging in the 
educational demands of college (e.g., completing schoolwork), and receiving a college degree. In 
addition, conscientiousness can be assessed multiple times—once during high school and once after 
high school. Adding this nuance helps to clarify the causal effects; in particular, early conscientiousness 
influences college admittance and the educational demands of college influences later 
conscientiousness. It also clarifies how childhood socioeconomic status affects multiple steps in the 
educational path, including college attendance and degree attainment. Assuming this more nuanced 
structure is accurate, controlling for childhood socioeconomic status would allow for the effect of post-
high-school conscientiousness on later career success to be identified.

Box 2.  Breaking Down Variables
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Career
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Fig. 9.  Breaking down variables in a directed acyclic graph.

Researchers will sometimes cite incremental validity, rather than explanation, as the motivation for 
statistical control. Incremental validity means that a new predictor accounts for substantial variance in an 
outcome variable over and above the variance accounted for by other, known predictors (Sechrest, 1963), 
and it is typically established using multiple regression with the previously known predictors included as 
controls. If the new predictor accounts for significant variance over and above the other predictors, then 
the new predictor is said to have incremental validity.

There are three common ways in which incremental validity is used in psychological research. The first 
is to establish the clinical usefulness of a test to predict a specific criterion (Smith et al., 2003). In this use, 
the research goal is improved prediction, and it is appropriate to choose control variables that represent 
whatever measures are currently most popular or predictive in the field. Incremental validity for the sake 
of establishing predictive utility does not require causal justification.

The second common use of incremental validity is to establish that a new theoretically motivated 
predictor explains a phenomenon over and above previously established predictors. In this case, 
incremental validity allows researchers to “[demonstrate] the empirical novelty of a conceptual contribution” 
while “simultaneously [acknowledging] a precedent established in earlier work” (Wang & Eastwick, 2020,  
p. 157). This use of incremental validity can lead to greater “understanding of the relations between a focal 
predictor, a covariate, and an outcome variable” (Wang & Eastwick, 2020, p. 157). We have endeavored to 
make clear by now that any method that aims to build up a theoretical understanding of variable relations 
needs to consider the causal direction of those relations when choosing which predictors to control for.

But Wang and Eastwick (2020) described a third use of incremental validity testing, which may initially 
seem not to require causal theory, namely, the “isn’t-it-just” argument. The isn’t-it-just argument uses 
incremental validity to dispute a criticism that a new measure predicts only an outcome because it is a 
proxy for some already established predictor (e.g., “You found an effect of Machiavellianism on aggressive 
behavior, but isn’t Machiavellianism just psychopathy?”). This “isn’t-it-just” argument, although it uses 
different language, is equivalent to ruling out an alternative explanation that Machiavellianism is a proxy for 
psychopathy (i.e., variability in psychopathy causes or produces variability in scores on a Machiavellianism 
scale). Someone who argues this point might claim that the estimated effect is due to a causal path from 
psychopathy to aggressive behavior rather than such a path from Machiavellianism to aggressive behavior 
(see Fig. 10). In other words, the “isn’t-it-just” argument is another way to posit a confounder. Thus, it makes 
sense to control for psychopathy to estimate the remaining (i.e., unique) effect of Machiavellianism on 
aggressive behavior. But before testing for incremental validity, it is still important to establish that 
psychopathy is a potential confounder by defending the underlying causal structure. If it were more 
plausible that psychopathy was a proxy for Machiavellianism, rather than the other way around, or that 
psychopathy was a plausible mediator of the effect of Machiavellianism on aggressive behavior, then it 
would not make sense to investigate the incremental validity of Machiavellianism over and above 
psychopathy. Therefore, researchers making the “isn’t-it-just” argument to test for incremental validity should 
carefully consider the plausible causal ordering of variables to appropriately control for third variables.

Box 3.  What About Controlling to Assess Incremental Validity?

when controlling for a collider, and this association is of 
the opposite sign and sufficiently strong. In addition, 
although researchers may not be concerned with the exact 

weight of the path of interest, they likely care that it is at 
least in the right direction (e.g., if higher Machiavellianism 
increases aggressive behavior, then it would not be helpful 
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to have results indicating that higher Machiavellianism 
decreases aggressive behavior). As Figures 4 and 5 show, 
controlling for an inappropriate third variable can inac-
curately flip the sign of the coefficient, which leads to an 
estimate that indicates a causal effect in the opposite direc-
tion. Therefore, we reiterate that for controlled results to 
be meaningfully interpreted to explain a process, a causal 
structure must be proposed and defended. Without a 
causal structure, neither the researcher nor the reader can 
make sense of discrepancies between the partial and sim-
ple coefficients.

Conclusion

Although the causal structure holds the key to identifying 
confounders, it is uncommon for psychological research-
ers to present causal justification for their choice of con-
trol variables. The absence of explicit causal reasoning 
may be due to an unspoken ban on causal language 
within psychology (Dablander, 2020; Grosz et al., 2020). 
In contrast to fields such as epidemiology and economics, 
psychologists who report on nonexperimental findings 
often claim to be interested in prediction or association 
even though the interpretations made within an article 
are more compatible with causal inference (Grosz et al., 
2020). In this article, we argued that statistical control for 
the goal of causal inference is incompatible with causal 
agnosticism about how the control variable relates to the 
predictor and outcome: Whether controlling for some 
variable increases or decreases bias is a function of how 
the variables in a model causally relate to each other.

There are three main benefits to justifying the causal 
structure. First, control variables are selected in a more 
appropriate and careful manner. This will improve results 
from analyses with control variables. Second, there will 
be an improvement in the theoretical models that moti-
vate the study. Most researchers have, at least implicitly, 
a hypothesized causal structure. Taking the time to (liter-
ally) draw the causal model may give researchers an 
opportunity to think carefully about their causal assump-
tions and to consider alternative plausible causal struc-
tures. Third, when the hypothesized causal structure is 
made explicit, readers will more easily glean the causal 
framework the authors are working from. Readers can 
then be aware of the assumptions that are inherent in a 
model and can reason about how those assumptions may 

influence the results if they are violated. In summary, 
psychological research stands to benefit substantially 
from researchers thinking and communicating carefully 
about why they selected specific control variables.

Appendix A

Wright (1934) outlined an approach (i.e., Wright’s rules) 
to obtain an implied correlation matrix from a causal 
structure or a path diagram. Assuming that all variables 
have variance = 1, the correlation between two variables 
can be found by summing all compound paths that travel 
between the two variables. A compound path (a) must 
not go through the same variable twice, (b) cannot go 
forward (→) and then backward (←; e.g., X → Z ← Y 
is not a valid compound path), and (c) can contain at 
most one double-headed arrow.

Figure A1 depicts a causal diagram for four variables 
(W, X, Y, and Z) in which the lowercase letters “a,” “b,” 
“c,” and “d” represent the causal path coefficients. The 
implied correlations for each pair of variables in this 
model are as follows:

Cor W X a,( ) =

Cor W Z ac,( ) = + abd

Cor W Y ab,( ) =

Cor X Y b,( ) =

Cor X Z c bd,( ) = +

Cor Y Z d bc,( ) = +

If a = b = c = d = .5, then

Cor W Z, . . .( ) = + =25 125 375

Cor W X, .( ) = 5

Cor W Y, .( ) = 25

Cor X Y, .( ) = 5

Aggressive BehaviorMachiavellianism

Psychopathy

Fig. 10.  Incremental validity as a question of confounding.

W
a

b

d

c

Y

X

Z

Fig. A1.  Path diagram depicting causal paths among variables W, 
X, Y, and Z.
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Cor X Z, . . .( ) = + =5 25 75

Cor Y Z, . . .( ) = + =5 25 75

This correlation matrix can then be used to calcu-
late regression coefficients (for R code, see OSF page, 
https://osf.io/64rfv/?view_only=f49974350af14a7185994
eeb00374306).
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Fig. B1.  Partial (adjusted for C) and simple (unadjusted) regression coefficients under four causal structures.

Appendix B

(see Fig. B1)

https://osf.io/64rfv/?view_only=f49974350af14a7185994eeb00374306
https://osf.io/64rfv/?view_only=f49974350af14a7185994eeb00374306
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Notes

1. Note that many statisticians prefer the term “adjust” over “con-
trol” in the context of regression. The concern is that statistical 
control may be mistakenly conflated with (the stronger) exper-
imental control (e.g., Gelman, 2019). Although we agree that 
“adjust” is more precise, we continue to use the term “control” 
because it is more prevalent in applied psychological research.
2. We use the terms “accuracy” and “bias” to describe the relation 
of a population regression coefficient (Y regressed on X) to the 
average causal effect of X on Y. This use is different from how 
“bias” is used in statistics, in which it describes the relation of an 
estimated statistic to its population quantity.
3. DAG Figures 1, 3, 4, 5, and 10 were created in R using the 
package ggDag (Barrett, 2021). All result figures were created in 
R (Version 3.6.2; R Core Team, 2021) using the package ggplot2 
(Wickham, 2016). 
4. Assuming two (or more) paths do not cancel each other out.
5. Some research questions can be answered only when the set 
of variables is measured at a specific interval. For example, if 
the research question pertains to how asking questions in class 
affects one’s final grade, then the “question” variable should rep-
resent the number of questions each student asked across the 
entire class rather than just a single week.
6. Bias amplification can occur when, after controlling for a con-
founder or an instrumental variable (especially one that is strongly 
correlated with X and only weakly correlated with Y), the bias 

from a second uncontrolled confounding path can increase. If the 
bias removed by controlling for one confounder is less than the 
amount of bias induced by bias amplification, the overall bias can 
increase (Steiner & Kim, 2016).
7. Some other definitions of a confounder (e.g., VanderWeele & 
Shpitser, 2013) do not draw a distinction between confounders 
and confound-blockers.
8. The code used to calculate the coefficients is available at  
https://osf.io/64rfv/?view_only=f49974350af14a7185994eeb00 
374306.
9. The interval at which a set of variables should be mea-
sured depends on the causal effect of interest (Lundberg et al., 
2021). For example, the effect of high school mentorship on 
postcollege income is a different causal effect than the effect 
of college mentorship on postcollege income. Each of these 
causal effects would require measuring mentorship at a differ-
ent interval.
10. Two other methods of removing time-invariant confounding 
is by estimating mean deviation scores and gain scores. See Kim 
and Steiner (2021) for a comparison of these methods.
11. If a predictor is not a likely cause of the outcome, then the 
researcher may be interested in prediction rather than explana-
tion. In that case, they may want to choose a set of predictors 
that maximizes the variance explained rather than focusing on 
the interpretation of coefficients.
12. Educational attainment is unlikely to be a proxy for conscien-
tiousness, given its clear and well-substantiated relation to career 
success. In addition, it is unlikely to be a collider between con-
scientiousness and work success, given the typical temporal rela-
tion between education and career success (i.e., most individuals 
complete their education before entering in the workforce).
13. The tendency to interpret these coefficients in the same way 
is known as the Table 2 Fallacy.
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