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Research Article

Children are born with all of their genes, and their experi-
ences necessarily accrue as they develop.1 It is therefore 
reasonable to expect that genetic variation will account 
for increasingly less variation in psychological outcomes 
as children develop, and variation in environmental expe-
riences will account for increasingly more of the variation 
in psychological outcomes (e.g., see Fryer & Levitt, 2006; 
Spelke, 2005; cf. McGue, Bouchard, Iacono, & Lykken, 
1993). One might expect this rationale to apply particu-
larly well to a highly complex psychological outcome, 
such as cognition, which is thought to develop as a result 
of experience-dependent neural connections (Garlick, 
2002) and is known to depend on environmental quality 
and educational experience (Ceci, 1991; Nelson et al., 
2007). Somewhat counterintuitively, a number of studies 
have indicated precisely the opposite developmental pat-
tern with respect to the genetic and environmental influ-
ences on cognition. McCartney, Harris, and Bernieri (1990) 
provided some of the earliest, persuasive evidence of this 
trend. In their analysis of 103 twin studies, the amount of 

variation attributable to genetic differences correlated 
positively with the age of the twins (r = .36), and the 
amount of variation attributable to the shared rearing 
environment correlated negatively (r = −.37). More 
recently, Bergen, Gardner, and Kendler (2007) conducted 
a meta-analysis of six studies and reported an increase in 
heritability from approximately 55% at age 13 years to 
70% at age 25 years. Haworth et al. (2010) synthesized 
individual-level data from six studies containing informa-
tion from 11,000 twin pairs and found that heritability 
increased from 41% at age 9 years to 66% at age 17 years.

The mechanisms that give rise to these developmental 
increases in heritability remain poorly understood. Two 
possibilities are what can be termed innovation and 
amplification (Plomin, 1986; Plomin & DeFries, 1985). 
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Abstract
Genes account for increasing proportions of variation in cognitive ability across development, but the mechanisms 
underlying these increases remain unclear. We conducted a meta-analysis of longitudinal behavioral genetic studies 
spanning infancy to adolescence. We identified relevant data from 16 articles with 11 unique samples containing a 
total of 11,500 twin and sibling pairs who were all reared together and measured at least twice between the ages of  
6 months and 18 years. Longitudinal behavioral genetic models were used to estimate the extent to which early genetic 
influences on cognition were amplified over time and the extent to which innovative genetic influences arose with 
time. Results indicated that in early childhood, innovative genetic influences predominate but that innovation quickly 
diminishes, and amplified influences account for increasing heritability following age 8 years.
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Innovation refers to the possibility that increasing herita-
bility results from novel genetic influences that were not 
present at previous time points. Innovation might arise 
because novel biological changes (e.g., hormonal 
changes associated with puberty) or environmental 
changes (e.g., the transition from the home to grade 
school) lead to the activation of genes. Compounded 
with previously active genetic variation, this newly active 
genetic variation can lead to an increase in heritability. 
Amplification refers to the possibility that early genetic 
influences on cognition become increasingly important 
with age. For example, transactional processes in which 
children select and evoke environments on the basis of 
small, genetically influenced differences in ability may, in 
turn, magnify those differences (Dickens & Flynn, 2001). 
Of course, decay processes may also operate, such that 
early genetic influences may not persist at full strength 
over time.

It is necessary to combine behavioral genetic and 
developmental methodologies to distinguish between 
innovation and amplification processes as the basis for 
increasing heritability. The classic twin model decom-
poses variation in cognitive test scores into proportions 
accounted for by genes (A); the shared environment (C), 
which operates at the family level and serves to make 
children living in the same household more similar; and 
the nonshared environment (E), which operates at the 
individual level and serves to differentiate children living 
in the same household. This analysis hinges on whether 
more genetically similar siblings are also more similar in 
their level of cognitive ability (Neale & Cardon, 1992). 
Longitudinal designs allow variation in an outcome to be 
partitioned into that which is shared with an earlier time 
point and that which is unique to a later time point. 
Longitudinal behavioral genetic models allow the vari-
ance in intelligence at each time point as well as the 
stable variance between time points to be decomposed 
into that due to A, C, and E. The increase in heritability of 
cognition can be understood in terms of the net effects of 
increases attributable to amplification (or decreases due 
to decay) of previously active genetic influences and 
those attributable to innovative, not previously active, 
genetic influences.

Goal of the Present Study

Our goal in the present study was to examine how 
genetic and environmental influences on cognition 
change over time by conducting a meta-analysis of data 
from longitudinal twin and adoption studies of cognitive 
ability in children aged 6 months to 18 years. First, we 
sought to replicate the trend of increasing heritability 
using only longitudinal data, which avoids validity threats 
associated with cross-sectional approaches (e.g., cohort 

effects; Baltes, 1968; Flynn, 1987). For example, if a study 
tested children at age 5 years and again at age 10 years, 
we examined the change accounted for by genetic and 
environmental factors over the 5-year interval, controlling 
for the age of assessment. Second, to explain these devel-
opmental changes, we examined age trends in amplifica-
tion and innovation, controlling for the time interval 
between measurements.

Method

We searched abstracts in the American Psychological 
Association’s PsycINFO database (http://www.apa.org/
pubs/databases/psycinfo/index.aspx) using combinations 
of terms from three categories: genetics (twin, genetic, 
adoption, adopted, adoptee), longitudinal (longitudinal, 
aging, stability), and cognition (intelligence, cognition, 
cognitive, ability). We included studies with the following 
characteristics: The samples of siblings had varying 
degrees of genetic relatedness, there was enough infor-
mation to derive complete across-time and within-time 
sibling correlations, the same ability was measured on 
two or more occasions using objective cognition/ 
intelligence tests, and participants were age 18 years or 
younger at baseline and at least one follow-up occasion. 
Full information concerning our search process, the arti-
cles included, study composition, data extraction, and 
variables analyzed can be found in the Supplemental 
Material available online. We identified effect sizes from 
16 articles and 11 unique samples containing longitudinal 
information from 4,047 monozygotic twin, 7,169 dizy-
gotic twin, 141 adoptive sibling, and 143 nonadoptive 
sibling pairs. All studies used a reared-together design. 
For each longitudinally measured cognitive outcome 
from each study, we compiled within- and across-time 
sibling correlations, separately by sibling type.

We used Mplus software (Muthén & Muthén, 2010) to 
specify longitudinal Cholesky decompositions to the 
multigroup correlation matrices. Figure 1 presents a 
reduced version of the Cholesky decomposition for one 
member of a sibling pair. Cognitive ability is partitioned 
into A, C, and E sources of variance. The latent variables 
labeled A

1
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and e
u
 parameters represent the proportion of variance 

attributable to innovation. Proportions of variance in cog-
nition at Time 2 attributable to A, C, and E were com-
puted as the sum of the squares of a

b
 and a

u
, c

b
 and c

u
, 

and e
b
 and e

u
, respectively. Across each pair of longitudi-

nal observations, we recorded changes in proportions of 
variance attributable to A, C, and E and the amounts of 
amplification and innovation of A, C, and E.2 In total, our 
longitudinal analyses made use of 125 unique pairs of 
repeated measures, yielding 125 × 9 effect sizes. Each 
effect size was associated with information regarding 
participants’ age when assessed, the length of time 
between measurement occasions, and the standard error 
of the estimate.

To estimate the influence of development on the vari-
ance components, we applied a series of meta-analytic, 
random-effects models. Not only do random-effects mod-
els index the imprecision of the meta-analytic estimates 
(i.e., the standard error of the meta-analytic parameter), 
but they also index the variability of the true effect size 
across studies. This is advantageous because it allows the 
results of the model to generalize beyond the studies that 
were included in the analysis to a theoretical population 
of heterogeneous studies (Hedges & Vevea, 1998). We 
adopted the general approach described by Cheung 
(2008) to estimate meta-analytic, random-effects models 

in Mplus. A weighting procedure was applied to provide 
unbiased standard errors. This entailed weighting all vari-
ables in our analysis by the inverse of the sampling vari-
ance of the dependent variable and the inverse of the 
number of effect sizes included per study. Additionally, 
the cluster option of Mplus was applied to correct for 
nonindependence of data points taken from the same 
study. Together, these corrections ensured that our stan-
dard errors accurately reflected the precision of the origi-
nal estimates and were not biased as a result of including 
multiple effect sizes per study.

To ensure that results were not driven by studies with 
large sample sizes, we constructed Alternative Model 1 to 
examine whether results persisted when excluding results 
based on the very large Twins Early Development Study 
(TEDS). Further, in Alternative Model 2, we investigated 
whether results persisted when not weighting by preci-
sion of the estimates. We chose to exclude the TEDS data 
for comparison because it is by far the largest twin study 
of cognitive development in this age range (Davis, 
Haworth, & Plomin, 2009). Therefore, this data set would 
have had substantially more leverage on the results than 
other studies, and we were interested in whether the 
identified trends held when effect sizes from this study 
were excluded. Additionally, this study used a unique 
modeling approach that may have influenced the extracted 
data. Rather than evaluating a model that included multi-
ple indicators of cognition at a given time point, Davis  
et al. (2009) constructed a model that included cognition 
at multiple time points to form each latent variable. This 
may have influenced the comparability of this study with 
others included in the meta-analysis.

Using these procedures, we ran a series of meta-ana-
lytic, random-effects regression models that predicted the 
nine outcomes of interest from the age of the participants 
at the initial time point, the time interval between mea-
surements, and the estimate of the magnitude of herita-
bility or environmentality (i.e., the proportion of variance 
due to environmental effects) at the initial time point. 
Age and time interval between measurements were cen-
tered at their across-sample averages (4.22 and 4.31 years, 
respectively). The initial estimates of genetic and envi-
ronmental factors were centered at values expected 
based on the across-sample average age (a2 = .36, c2 = 
.43, e2 = .22). We had two main empirical questions. First, 
does the trend of increasing heritability hold when longi-
tudinal data are used to examine differences in time lag 
rather than age? Second, across the developmental period 
of infancy to adolescence, do innovative or amplified 
genetic effects explain increases in heritability? In our 
analyses of change in the magnitudes of a2, c2, and e2, 
our main emphasis was on interpreting the time-interval 
parameter to verify that heritability increases over time, 
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Fig. 1.  Longitudinal behavioral genetic Cholesky decomposition for 
one member of a sibling pair. The latent variables A, C, and E represent 
the influence of genetic variation, shared environmental variation, and 
nonshared environmental variation, respectively. A
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even with participant age controlled. In our analyses of 
amplification and innovation, our main emphasis was on 
interpreting the age parameter with time interval between 
measurements controlled.

Results

Descriptive statistics

Table 1 presents characteristics of samples in the studies 
included in the meta-analysis. The studies covered the 
entire span from 6 months to 18 years of age, with sub-
stantial variability in longitudinal time intervals between 
measurements. There was a fairly even split between 
male and female individuals, but the studies predomi-
nantly sampled White participants.

Changes in genetic and environmental 
factors

Previous reports of developmental increases in heritabil-
ity were largely confirmed by our longitudinal meta-anal-
ysis of within-study change presented in Table 2. Longer 
time intervals between measurements were associated 
with larger increases in heritability (b = 0.028, p < .01) 
and larger decreases in shared environmentality (b = 
−0.038, p < .001). Larger increases in heritability were 
also associated with older ages (b = 0.023, p < .01). The 
results for the developmental trends in the nonshared 
environment were slightly more complex. Longer longi-
tudinal time intervals between measurements were asso-
ciated with larger increases in the variance attributable  
to the nonshared environment (b = 0.019, p < .001), and 
older age was associated with smaller increases in the 
variance attributable to the nonshared environment (b = 
−0.011, p < .05). The trends for the effects of time interval 
between measurements are plotted in Figure 2 over  
a range of 15 years, the longest observed time interval in 
our meta-analysis. Because participant age was controlled, 
the increases in heritability and decreases in shared envi-
ronmentality evident in Figure 2 are entirely reflective of 
longitudinal changes, as opposed to cross-sectional age 
differences.

The results were similar in the alternative models, 
which indicate more pronounced increases in heritability 
and more pronounced decreases in shared environmen-
tality over longer time intervals. Trends for the effects of 

Table 1.  Characteristics of Participants Across Studies Included 
in the Meta-Analysis

Variable  M SD Range

Age at baseline (years) 4.22 2.86 0.50–12.00
Time interval between  
 measurements (years)

4.31 3.38 0.33–15.00

Age at follow-up (years) 8.52 4.33 1.00–18.10
Female (%) 50.10 3.27 47–58
Non-White (%) 8.45 1.68 0–39

Note: Characteristics are weighted per sample rather than by indi-
vidual participants.

Table 2.  Results of the Random-Effects Regression Models of Longitudinal Changes in Genetic (a2), Shared Environment 
(c2), and Nonshared Environment (e2) Factors

Variable Intercept Participant age
Time between 
assessments Time 1 estimate τ

Change in a2  
  Primary model 0.100 (0.009)*** 0.023 (0.007)** 0.028 (0.009)** –0.854 (0.161)*** 0.000 (0.000)
  Alternate Model 1 0.094 (0.025)*** 0.023 (0.009)* 0.026 (0.009)** –0.829 (0.201)*** 0.000 (0.000)*
  Alternate Model 2 0.078 (0.028)** 0.023 (0.011)* 0.025 (0.010)* –1.038 (0.233)*** 0.000 (0.000)***
Change in c2  
  Primary model –0.177 (0.015)*** –0.011 (0.006)† –0.038 (0.011)*** –0.777 (0.087)*** 0.000 (0.000)
  Alternate Model 1 –0.112 (0.013)*** –0.008 (0.005) –0.022 (0.009)* –0.590 (0.127)*** 0.000 (0.000)**
  Alternate Model 2 –0.135 (0.025)*** –0.007 (0.013) –0.036 (0.015)* –0.829 (0.216)*** 0.001 (0.000)***
Change in e2  
  Primary model 0.039 (0.010)*** –0.011 (0.004)* 0.019 (0.004)*** –0.888 (0.132)*** 0.031 (0.008)***
  Alternate Model 1 –0.011 (0.014) –0.005 (0.002)** 0.005 (0.003) –0.474 (0.103)*** 0.000 (0.000)***
  Alternate Model 2 0.018 (0.025) –0.006 (0.004) 0.008 (0.006) –0.449 (0.215)* 0.001 (0.000)***

Note: Unstandardized coefficients are shown. Values in parentheses are standard errors. τ is a random effect that represents the estimated 
between-studies standard deviation in the true effect size (i.e., correcting for sampling variance). The primary model includes all data 
and weights. Alternate Model 1 does not include the Twins Early Development Study (TEDS) data. Alternate Model 2 does not weight 
estimates by their precision.
†p < .10. *p < .05. **p < .01. ***p < .001.
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time interval between measurements indicated by each 
of these alternative models are plotted in Figures S1 and 
S2 in the Supplemental Material.

Amplification and innovation

Table 3 presents the results of the random-effects regres-
sion models for the amplification of A, C, and E. Focusing 
on the primary model, we found that the intercept of 

each variance component was significantly negative. This 
indicates that earlier genetic or environmental effects 
have a tendency to decay, at least at this very early stage 
of development. Only one parameter was statistically  
significant by traditional standards, and it indicated  
that earlier shared environmental influences become less 
important with greater time lag. However, there were 
some potentially important trends that did not meet tradi-
tional levels of statistical significance. The age coefficients 
were marginally significant for genes (b = 0.089, p = .06) 
and the shared environment (b = 0.018, p = .07). Further, 
the age coefficient for genes was highly significant in both 
alternative models, and the age coefficient for the shared 
environment was significant when the TEDS data were 
removed.

As seen in Table 4, innovative influences displayed 
many strong associations with age and time lag. Focusing 
on the primary model, we found that the intercept of 
each variance component was significantly positive, and 
the coefficient for age was significantly negative. This 
indicates that novel genetic and environmental influences 
are more common early in life but diminish in impor-
tance with age. Longer time intervals between measure-
ments were associated with a larger degree of innovative 
genetic and nonshared environmental influences but a 
smaller amount of innovative shared environmental influ-
ences. The results were generally attenuated in the alter-
native models, but there was only a small degree of 
absolute change in the coefficients.

To answer the question of what processes account for 
the changes in heritability and environmentality across 
the age range of 6 months to 18 years, we plotted the 
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Fig. 2.  Predicted amount of change in the proportion of variance 
accounted for by genes, the shared environment, and the nonshared 
environment across time intervals between assessments. Shading rep-
resents ±1 SE.

Table 3.  Results of the Random-Effects Regression Models of Amplification of Genetic (A), Shared Environment (C), and 
Nonshared Environment (E) Factors

Variable Intercept Participant age
Time between 
assessments Time 1 estimate τ

Amplification of A  
  Primary model –0.217 (0.026)*** 0.089 (0.048)† –0.006 (0.027) –1.640 (0.839)† 0.019 (0.074)
  Alternate Model 1 –0.137 (0.021)*** 0.053 (0.008)*** 0.007 (0.009) –1.041 (0.149)*** 0.000 (0.000)†

  Alternate Model 2 –0.124 (0.029)*** 0.055 (0.008)*** 0.001 (0.008) –1.193 (0.149)*** 0.000 (0.000)***
Amplification of C  
  Primary model –0.354 (0.013)*** 0.018 (0.010)† –0.014 (0.007)* –0.801 (0.149)*** –0.011 (0.027)
  Alternate Model 1 –0.323 (0.016)*** 0.013 (0.005)** –0.009 (0.005)† –0.878 (0.071)*** 0.000 (0.000)
  Alternate Model 2 –0.296 (0.023)*** 0.005 (0.010) –0.034 (0.014)* –1.179 (0.211)*** 0.001 (0.000)***
Amplification of E  
  Primary model –0.216 (0.004)*** 0.000 (0.001) –0.001 (0.001) –0.907 (0.040)*** 0.000 (0.000)*
  Alternate Model 1 –0.216 (0.003)*** 0.000 (0.001) –0.001 (0.001) –0.965 (0.022)*** 0.000 (0.000)***
  Alternate Model 2 –0.216 (0.003)*** 0.001 (0.001) 0.000 (0.001) –0.972 (0.021)*** 0.000 (0.000)***

Note: Amplification refers to the carryover of early influences across time. Unstandardized coefficients are shown. Values in parentheses are 
standard errors. τ is a random effect that represents the estimated between-studies standard deviation in the true effect size (i.e., correcting 
for sampling variance). The primary model includes all data and weights. Alternate Model 1 does not include the Twins Early Development 
Study (TEDS) data. Alternate Model 2 does not weight estimates by their precision.
†p < .10. *p < .05. **p < .01. ***p < .001.
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amplification and innovation trends against baseline age 
for each variance component, assuming a 1-year interval 
between measurement occasions (see Fig. 3). In the very 
early years of life, innovative genetic influences appear to 
account for the increase in heritability. By approximately 
age 8, genetic amplification effects become predominant 
and innovative genetic effects reach zero. However, the 
primary model did not estimate the genetic amplification 
parameter very precisely, as is evident by the wide shad-
ing, rendering interpretation somewhat difficult. The 
alternative models imply a more gradual slope but with 
much greater precision. For the shared environment, 
innovative influences slowly decrease and decay effects 
slowly fade with age. Finally, the nonshared environment 
largely displayed decay effects that were replaced by 
innovative influences. Results from the alternative models 
are plotted in Figures S3 and S4 in the Supplemental 
Material.

Discussion

Despite the intuitive appeal of the prediction that accru-
ing socializing forces result in decreased genetic influ-
ences on cognition with age, or that genetic influences 
are immutable and entirely apparent at birth, the field of 
developmental behavior genetics has uncovered evi-
dence that the genetic influences on intelligence increase 
with age (Plomin & Spinath, 2004). This integrative meta-
analysis has attempted to provide an in-depth investiga-
tion of the mechanisms underlying this phenomenon. We 

focused on two types of processes that might underlie 
these changes, namely amplification, whereby early 
genetic influences on cognition carry over across time, 
and innovation, whereby novel genetic influences on 
cognition emerge with time. We found that each process 
varies systematically over the age range from infancy to 
adolescence. Put succinctly, genetic innovation predomi-
nates in infancy and early childhood, whereas genetic 
amplification predominates in middle childhood and 
adolescence. We discuss the implications of each of these 
trends below.

Innovation

In early childhood, increasing genetic influences on cog-
nitive ability can be attributed to innovative genetic influ-
ences. In other words, genes not previously affecting 
cognition at one point in time begin to affect cognition at 
later points in time. What may be the causes of this early 
innovation? One possible mechanism of innovation is 
that biological maturation across infancy and early child-
hood may activate genes. Although puberty is an often 
cited example of a developmental transition that may be 
accompanied by the preprogrammed activation of genetic 
influences (Eaves, Long, & Heath, 1986), we found that 
innovative genetic influences predominate well before 
the earliest beginning ages of adrenarche (McClintock & 
Herdt, 1996). A second possible mechanism for innova-
tion may be children’s continual introduction into new 
environments that activate genes for cognition. This can 

Table 4.  Results of the Random-Effects Regression Models of Innovation of Genetic (A), Shared Environment (C), and 
Nonshared Environment (E) Factors

Variable Intercept Participant age
Time between 
assessments Time 1 estimate τ

Innovation of A  
  Primary model 0.293 (0.011)*** –0.033 (0.005)*** 0.045 (0.008)*** 0.081 (0.126) 0.000 (0.000)
  Alternate Model 1 0.235 (0.029)*** –0.025 (0.009)** 0.027 (0.012)* 0.040 (0.148) 0.000 (0.000)†

  Alternate Model 2 0.191 (0.031)*** –0.032 (0.008)*** 0.022 (0.010)* 0.196 (0.168) 0.000 (0.000)***
Innovation of C  
  Primary model 0.124 (0.012)*** –0.022 (0.008)** –0.022 (0.011)† 0.267 (0.092)** 0.000 (0.000)
  Alternate Model 1 0.197 (0.021)*** –0.018 (0.006)** 0.000 (0.004) 0.496 (0.090)*** 0.000 (0.000)
  Alternate Model 2 0.156 (0.029)*** –0.012 (0.005)* –0.001 (0.005) 0.364 (0.100)*** 0.000 (0.000)***
Innovation of E  
  Primary model 0.240 (0.010)*** –0.011 (0.004)** 0.018 (0.005)*** 0.047 (0.110) 0.023 (0.006)***
  Alternate Model 1 0.192 (0.015)*** –0.006 (0.003)* 0.006 (0.003)† 0.386 (0.089)*** 0.000 (0.000)**
  Alternate Model 2 0.231 (0.025)*** –0.007 (0.004) 0.008 (0.006) 0.552 (0.219)* 0.000 (0.000)***

Note: Innovation refers to the emergence of novel influences over time. Unstandardized coefficients are shown. Values in parentheses 
are standard errors. τ is a random effect that represents the estimated between-studies standard deviation in the true effect size (i.e., 
correcting for sampling variance). The primary model includes all data and weights. Alternate Model 1 does not include the Twins Early 
Development Study (TEDS) data. Alternate Model 2 does not weight estimates by their precision.
†p < .10. *p < .05. **p < .01. ***p < .001.
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occur through experience-dependent activation of genes 
at the level of the genome, but it can also occur through 
a process by which early genetically influenced traits 
irrelevant to cognition in home or day-care contexts 
become progressively more important for cognitive 
development in kindergarten and grade school contexts 
(Tucker-Drob & Harden, 2012b).

Innovative shared environmental effects are also pres-
ent but slowly fade in importance. One possible explana-
tion for this trend is the introduction into the educational 
system. Innovative shared environmental effects might 

occur as some families send their children to day care 
and preschool, whereas other families provide early care 
at home. However, as all children ultimately enter the 
educational system, standardized educational practices 
can serve to equalize differences between families 
(Downey, von Hippel, & Broh, 2004; Tucker-Drob, 2012).

Amplification

In early childhood, decay, not amplification, of earlier 
genetic and environmental influences appears to be the 
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Fig. 3.  Predicted influence of amplification and innovation effects on variance in cognitive ability at the second time point of measurement across 
participants’ age. Results are shown separately for the influence of (a) genes, (b) the shared environment, and (c) the nonshared environment. 
Amplification refers to the carryover of early influences across time. Innovation refers to the emergence of novel influences over time. In each graph, 
shading represents ±1 SE.
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rule rather than the exception. These trends change with 
age, such that by middle childhood, genetic influences 
stop decaying and become amplified. Transactional mod-
els provide an appealing framework for understanding 
amplification. Under transactional models, genetic influ-
ences become amplified through a process in which 
early levels of ability become reinforced through the 
selection and evocation of experiences consistent with 
those ability levels (Dickens & Flynn, 2001; Plomin, 
DeFries, & Loehlin, 1977). Scarr and McCartney (1983) 
suggested that one’s genotype drives development, 
because “it is the discriminator of what environments are 
actually experienced” (p. 425). For example, small geneti-
cally influenced differences in cognitive ability can lead 
to differences in aspects of the environment provided by 
parents, teachers, and peers that in turn influence subse-
quent cognitive development (Tucker-Drob & Harden, 
2012a, 2012b).

Strengths and limitations

A major strength of the current study is that we applied a 
standard behavioral genetic model to data derived from 
different empirical reports to yield a common set of 
parameters that could be aggregated. This was particu-
larly advantageous in allowing us to combine data from 
studies of different age periods to make inferences about 
the entire range of development from infancy to adoles-
cence. In total, our meta-analysis was derived from objec-
tive assessments of more than 23,000 individuals. However, 
this sample was obtained from a relatively small number 
of independent longitudinal samples. Our estimates were 
therefore likely to be vulnerable to idiosyncratic aspects 
of individual studies. For example, when the TEDS data 
were removed, the parameter estimate for the amplifica-
tion of genetic effects was far more precise. This may be 
due to the unique modeling approach taken by the origi-
nal authors or to potential differences in developmental 
processes across populations (e.g., Hanscombe et al., 
2012). However, parameter values (as separate from sig-
nificance levels) across primary and alternative models 
were remarkably consistent.

A second limitation is that we were unable to deter-
mine the extent to which the nonshared environment 
represented true environmental influences rather than 
error of measurement. Although the nonshared environ-
ment can be corrected of measurement error with infor-
mation regarding test reliability, this was not well reported 
in the studies included in our meta-analysis. Therefore, 
we must assume that the level of measurement error is 
not systematically confounded with age to draw conclu-
sions about age trends in the nonshared environment.

A third limitation is that we were able only to compute 
standardized estimates of genetic and environmental 

contributions. Longitudinal covariance matrices (as 
opposed to correlation matrices) of the same measures 
taken over time are necessary to estimate unstandardized 
genetic and environmental variance components and 
evaluate changes in total phenotypic variance with age. 
A minority of studies (25%) reported enough information 
to produce usable covariance rather than correlational 
matrices. This amounted to an even smaller portion of 
extracted sets of effect sizes (13.6%), rendering explora-
tion of changes in amounts (rather than proportions) of 
variance attributable to genetic and environmental ampli-
fication and innovation severely limited.

A fourth limitation is that the cognitive tests were often 
upgraded to be developmentally appropriate across 
waves. This was the case for half of the studies and the 
majority of extracted sets of effect sizes (64.8%; see Table 
S1 in the Supplemental Material for details). If changing 
tests resulted in changing the abilities that were mea-
sured, our innovation estimates could be inflated. We 
avoided this threat by including only studies that mea-
sured the same ability over time (even if assessed with 
different measures). Empirically, we evaluated this influ-
ence in our primary models by including a dummy-coded 
variable indicating whether or not the cognitive test had 
changed between time points. This parameter was not 
significant for any model of amplification, but it was sig-
nificant for models of genetic and nonshared environ-
mental innovation. However, for both of these models, 
the age parameter, which was the focal parameter in this 
analysis, remained statistically significant and was altered 
only by a value of .001.

Finally, we focused on linear models of developmental 
change. However, linear models are simplifications of 
more complex trends that are likely to occur across 
development. As part of the current project, we had also 
fit quadratic age functions to the genetic amplification 
and innovation effect sizes, but the quadratic terms were 
not significant. More studies are likely required for pre-
cise nonlinear age trends in innovation and amplification 
to be accurately estimated with meta-analysis.

Conclusion

By applying longitudinal behavioral genetic models to 
meta-analytic data on twins and siblings, we sought to 
identify the mechanisms underlying the well-established 
finding that genetic influences on cognitive abilities 
increase over the course of development (Bergen et al., 
2007; Haworth et al., 2010). Our results indicate that lon-
gitudinal changes in heritability can be understood in 
terms of both innovative variance explained by genes not 
previously active and carryover (amplification and decay) 
of previously active genetic influences, with the relative 
contributions of each of these mechanisms differing 
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across development. During the early years of life, it 
appears that genes are “activated,” whereas previous 
genetic influences decay. These relative contributions 
change gradually, such that by approximately 8 years of 
age, genetic innovation desists and existing genetic influ-
ences begin to amplify.
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Notes

1. We refer here to objective experiences, defined as “environ-
mental events as they might be observed by a researcher, as 
opposed to how they affect family members” (Turkheimer & 
Waldron, 2000, p. 79).
2. To be more explicit about how each effect size was derived, 
we report the mathematical calculations. For genetic factors, 
change in the proportion of variance was calculated as (a

b
2 + 

a
u
2) − a

1

2, amplification was calculated as a
b
2 − a

1

2, and inno-
vation was calculated as a

u
2. For shared environmental factors, 

change in the proportion of variance was calculated as (c
b
2 + 

c
u
2) − c

1

2, amplification was calculated as c
b
2 − c

1

2, and innova-
tion was calculated as c

u
2. For nonshared environmental factors, 

change in the proportion of variance was calculated as (e
b
2 + 

e
u
2) − e

1

2, amplification was calculated as e
b
2 − e

1

2, and innova-
tion was calculated as e

u
2.
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