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Environmental measures used widely in the behavioral sciences show nearly as much genetic
influence as behavioral measures, a critical finding for interpreting associations between
environmental factors and children's development. This research depends on the twin method
that comparesmonozygotic anddizygotic twins, but key aspects of children's environment such as
socioeconomic status (SES) cannot be investigated in twin studies because they are the same for
children growing up together in a family. Here, using a new technique applied to DNA from 3000
unrelated children, we show significant genetic influence on family SES, and on its association
with children's IQ at ages 7 and 12. In addition to demonstrating the ability to investigate genetic
influence on between-family environmentalmeasures, our results emphasize the need to consider
genetics in research and policy on family SES and its association with children's IQ.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

A surprising finding from quantitative genetic research
is thatmost environmentalmeasures in the social andbehavioral
sciences show significant and substantial genetic influence
(Kendler & Baker, 2007; Plomin, 1994; Plomin & Bergeman,
1991; Vinkhuyzen, van der Sluis, de Geus, Boomsma, &
Posthuma, 2010). This genetic influence on environmental
measures is attributed to genotype–environment correlation in
which individuals' experiences are correlated with their genetic
propensities (Plomin, DeFries, Knopik, & Neiderhiser, 2013).
Most of this quantitative genetic research relies on the classical
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twin design that compares monozygotic and dizygotic twins.
However, using the twin method for this purpose runs into a
major limitation, especially in developmental studies: The twin
design can only investigate environmental factors that make
members of a twin pair living in the same family different
from one another, called within-family environmental effects.
However, some of the most influential aspects of the family
environment operate between rather than within families. For
example, consider the most widely studied measure in the
social and behavioral sciences, socioeconomic status (SES),
which we refer to as family SES because of our focus on
children's development (Bradley & Corwyn, 2002). A study of
school-age twins cannot detect genetic influence on family SES
or its effect on twins' cognitive development because family
SES is the same for members of a twin pair. Because family SES
is the same for both twins in a family, a twin study would
mistakenly attribute variance in family SES to shared environ-
ment even if genetic factors were in fact substantially involved.
Most importantly, genetic mediation of the effect of family SES
on children's cognitive development would also be missed by
the twin method.
rights reserved.
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A new quantitative genetic method that uses DNA from
unrelated individuals can solve this problem because it can
assess genetic effects on between-family and between-school
differences in children's outcomes. The method, called
Genome-wide Complex Trait Analysis (GCTA), foregoes the
identification of individual DNA variants to estimate the
total genetic influence captured by genome-wide genotyping
for a large sample of unrelated individuals whose genetic
similarity is compared pair by pair (Yang, Lee, Goddard, &
Visscher, 2011). The significance of GCTA is that it can estimate
the net effect of genetic influence using DNA of unrelated
individuals rather than using familial resemblance in groups of
special family members who differ in genetic relatedness such
as monozygotic and dizygotic twins. We applied GCTA based
on children's genotypes to detect genetic influence on family
SES as well as genetic mediation of the effect of family SES on
children's cognitive development.
2. Methods

2.1. Sample and genotyping

The sample was drawn from the Twins Early Development
Study (TEDS), which is a multivariate longitudinal study that
recruited over 11,000 twin pairs born in England and Wales in
1994, 1995 and 1996 (Haworth, Davis, & Plomin, 2013). TEDS
has been shown to be representative of the UK population
(Kovas, Haworth, Dale, & Plomin, 2007). The project received
approval from the Institute of Psychiatry ethics committee
(05/Q0706/228) and parental consent was obtained prior to
data collection. Cognitive data and buccal DNA were available
for 3747 11- and 12-year-old children (one twin per family),
whose first language was English and had nomajor medical or
psychiatric problems. From that sample, 3665 DNA samples
were successfully hybridized to Affymetrix GeneChip 6.0 SNP
genotyping arrays using standard experimental protocols as
part of the WTCCC2 project (Trzaskowski et al., 2013b). In
addition to nearly 700,000 genotyped SNPs, more than one
million other SNPs were imputed using IMPUTE v.2 software
(Howie, Donnelly, & Marchini, 2009). 3152 DNA samples (1446
males and 1706 females) survived quality control criteria for
ancestry, heterozygosity, relatedness, and hybridization intensi-
ty outliers. To control for ancestral stratification, we performed
principal component analyses on a subset of 100,000 quality-
controlled SNPs after removing SNPs in linkage disequilibrium
(r2 N 0.2). Using the Tracy–Widom Test, we identified 8 axes
with p b 0.05, which were used as covariates in our GCTA
analyses. This is standard procedure in genome-wide association
analyses to avoid artificial associations due to ethnic or other
types of population stratification (Trzaskowski et al., 2013b);
correcting for these covariates is also standard in GCTA in order
to avoid this source of genetic similarity among individuals in the
population (Yang et al.).

The mean age of the sample at the first wave of assessment
was 7.04 years (SE = 0.25) and 11.5 years (SD = 0.66) at the
second wave. There were 2679 individuals with SES at 7 and
1897 with IQ at 7. The sample of individuals available for the
covariance was 1750. In addition, there were 2319 individuals
with IQ at age 12 forwhoma total of 2013had data for both SES
at age 7 and IQ at age 12.
2.2. Measures

2.2.1. Socioeconomic status (SES)
There is general consensus that a composite of variables

including parental education and occupation represent SES
better than any single indicator (White, 1982). To index
family SES we used parental education and occupation assessed
when children were age 2 and again when children were age 7.
At age 2, SES was constructed from the first unrotated principal
component, which explained more than 50% of the variance
from a factor analysis conducted on five measures: father's
highest educational qualification, father's occupation, mother's
highest educational qualification, mother's occupation, and age
of mother at birth of eldest child. The SES composite when
children were age 7 was created similarly but without the
variable of age of mother at birth of eldest child.

2.2.2. General cognitive ability (IQ)
At ages 7 and 12, IQ was assessed from two verbal tests

and two non-verbal tests. At age 7, the two verbal tests consisted
of the Similarities subset and the Vocabulary subset from the
WISC-III-UK. The two nonverbal tests were the Picture Comple-
tion subset from the WISC-III-UK and the Conceptual Grouping
subset from theMcCarthy Scales of Children's Abilities. At age 12,
the verbal tests were Information (General Knowledge) and
Vocabulary Multiple Choice subtests from WISC-III-PI. The two
non-verbal reasoning testswereWISC-III-UKPicture Completion
andRaven's Standard andAdvanced ProgressiveMatrices. At age
7, testingwas conducted by telephone (Petrill, Rempell, Oliver, &
Plomin, 2002) and at age 12 testing was conducted over the
Internet (Haworth et al., 2007).

2.2.3. Composite measures for IQ
For each cognitive measure, outliers above or below 3 SD

from the mean were excluded. Scores were regressed on sex
and age and standardized residuals were derived and quantile
normalized (Lehmann, 1975). Subsequently, composite mea-
sures for IQ were created as unit-weighted means requiring
complete data for at least 3 of the 4 tests. All procedures were
executed using R (www.r-project.org).

2.3. Statistical analyses

Genome-wide Complex Trait Analysis (GCTA). Conceptually
GCTA compares a matrix of pairwise genomic similarity to a
matrix of pairwise phenotypic similarity using a random-
effects mixed linear model in a large sample of unrelated
individuals (Yang et al., 2011). The matrix that holds genomic
similarities between all individuals from the sample is known
as the genetic relatedness matrix (GRM). Each value in the
GRM is a mean of pairwise genetic similarities (weighted by
allele frequency) from across all genetic markers genotyped
on the SNP array. Even remotely related pairs of individuals
are excluded so that chance genetic similarity is used as a
random effect in a mixed linear maximum likelihood model
to decompose phenotypic variance into genetic variance as
captured by the additive effects of causal variants in linkage
disequilibrium with SNPs genotyped on DNA arrays (Yang
et al., 2010). For this reason, as a default, GCTA removes one
individual from a pair whose genetic similarity is 0.025 or
greater; a coefficient that approximates at least fifth degree

http://www.r-project.org


Table 1
Univariate genome-wide complex trait analysis (GCTA) results (with standard errors) for family socioeconomic status (SES) when the children were age 2
and age 7.

V(G) V(e) Vp V(G)/Vp Log L Log L0 LRT df p n

SES 2 .18(.12) .80(.12) .98(.03) .19(.12) −1407.95 −1409.23 2.56 1 0.05 2864
SES 7 .19(.12) .79(.12) .99(.03) .20(.12) −1321.16 −1322.45 2.57 1 0.05 2679

Annotation: V(G) — variance explained by genetic factors; V(e) — residual variance; Vp — phenotypic variance; V(G)/Vp — proportion of the phenotypic variance
explained by genetic factors; Log L— log likelihood estimation of themodel; Log L0— log likelihood estimation of the nullmodel (no genetic component); LRT— likelihood
ratio test (approximated to a half of chi-square); df — degrees of freedom; values in parentheses are standard errors.
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relatives. The power of the method comes from comparing,
not just two groups like MZ and DZ twins, but thousands of
pairs of unrelated individuals. Nonetheless, GCTA requires
samples of thousands of individuals because the method
attempts to extract a small signal of genetic similarity from
the massive noise of hundreds of thousands of SNPs. Software
is available to calculate power for univariate and bivariate
GCTA (http://spark.rstudio.com/ctgg/gctaPower/)(Visscher et al.,
2013). For example, a sample of 3000 has 80% power to
detect a GCTA heritability estimate of 30% and 50% power to
detect a GCTA heritability estimate of 20%. For bivariate
analysis, a sample of 3000 provides 80% power to detect a
genetic correlation of 0.60 and 50% power to detect a genetic
correlation of 0.45 when the GCTA heritability of one trait is
20% and the other is 30%.

In univariate analysis, the coefficients are estimated using
residual maximum likelihood and the significance of genetic
influence is inferred from the likelihood ratio test by comparing
this model to a ‘null’ model of no genetic influence. Detailed
description of the method can be found in GCTA publications
(Yang et al., 2011). The bivariate method extends the univariate
model by relating the pairwise genetic similarity matrix to a
phenotypic covariancematrix between traits 1 and 2 (Lee, Yang,
Goddard, Visscher, & Wray, 2012). The eight principal compo-
nents described earlier were used as covariates in our univariate
and bivariate GCTA analyses in order to attenuate the effects of
ethnic and other forms of population stratification that could be
read as genetic similarity, which is standard procedure in
genome-wide analyses. As mentioned in the previous section,
IQ scores were age- and sex-regressed prior to analysis.

3. Results

Using SNP genotypes from the children's DNA, we found
significant genetic influence on their families' SES when the
children were age 2 and age 7 (Table 1). The GCTA estimates of
heritabilitywere 18% at age 2 and 19% at age 7; the similarity of
results at age 2 and 7 is not a foregone conclusion because the
correlation between family SES at the two ages is 0.75. These
are underestimates of true heritability because GCTA is limited
to detecting genetic influence due to additive effects of the
common SNPs that are on current DNAmicroarrays such as the
Affymetrix 6.0 GeneChip used in our study. That is, nonadditive
effects and rarer DNA variants not tagged by common SNPs
aremissed inGCTAanalysis. A novel aspect of the present study
is that children cannot cause family SES — their genotypes
only reflect the causal genotypic factors responsible for their
parents' education and occupation. For this reason, parental
genotypes, not available in the present study, would be
expected to yield a higher GCTA estimate of the parents' own
education and occupation, which comprise SES. This was the
case for a recent GCTA report of a component of SES, adult
educational attainment (Rietveld et al., 2013).

A strength of our child-based design using children's
genotypes in GCTA analyses rather than that of their parents
is that it captures the genetic influence of family SES on the
children themselves. This feature of the design enables the
second stage of our analyses in which we conducted bivariate
GCTA to determine the extent to which the well known link
between family SES and cognitive development – about 0.30
in meta-analyses (Sirin, 2005) and in the present study – is
mediated genetically. Because bivariate GCTA focuses on
the genetic covariance between family SES and children's IQ,
our analysis is limited to TEDS children for whom data are
available for both variables. Despite the smaller samples, the
bivariate GCTA heritability estimates for family SES (Table 2)
are similar to the univariate estimates (Table 1): 21% at age 7
and 23% at age 12. For children's IQ, we find heritabilities of 28%
at age 7 and 32% at age 12. These results from our bivariate
analysis between family SES and children's IQ replicate our
previously reported results showing significant GCTA herita-
bility in our TEDS sample at ages 7 and 12 (Plomin et al., 2013;
Trzaskowski, Yang, Visscher, & Plomin, 2013) as well as
another study that reported significant GCTA heritability at
age 11 (Davies et al., 2011).

The key result for the bivariate GCTA analysis is the
genetic correlation, which indicates the extent to which the
same genes affect family SES and children's IQ. The genetic
correlation between family SES at age 7 and children's IQ at
age 7 is near unity, indicating that the same genes affect both
variables (Table 2). Despite the large standard error for GCTA
estimates of genetic correlations, the genetic correlation is
significantly greater than zero and not significantly lower
than 1.0. We also conducted bivariate GCTA for family SES at
age 7 and children's IQ at age 12 (family SES was not assessed
at age 12). The GCTA genetic correlation was 0.66, which was
again significantly greater than zero and not significantly
lower than 1.0. Thus, these GCTA genetic correlations indicate
that the same genes are largely responsible for genetic effects
on family SES and children's IQ. This finding implies that when
genes associated with children's IQ are identified, the same
genes will also be likely to be associated with family SES.
Although GCTA estimates of genetic variance and genetic
covariance are biased in that they underestimate heritability to
the extent that nonadditive effects and rare alleles are not
included in the estimate, GCTA estimates of genetic correla-
tions are unbiased because they are derived from the ratio
of genetic covariance to genetic variance so that the bias in
the numerator and denominator cancel out (Trzaskowski et al.,
2013a).

http://spark.rstudio.com/ctgg/gctaPower/)


Table 2
Bivariate GCTA results (with standard errors) between family SES when children were age 7 versus children's IQ at ages 7 and 12.

Variables A E Vp_tr1 Vp_tr2 n_tr1/n_tr2

V(G)_tr1 V(G)_tr2 C(G)_tr12 V(G)/
Vp_tr1

V(G)/
Vp_tr2

rG V(e)_tr1 V(e)_tr2 C(e)_tr12 rE*

SES 7 – IQ 7 .21(.12) .28(.17) .29(.11) .21(.12) .28(.17) 1.00(.47) .78(.12) .72(.17) .03(.11) .04(.14) .99(.03) 1(.03) 2679 1897
SES 7 – IQ 12 .23(.12) .32(.14) .18(.10) .24(.12) .32(.14) 0.66(.31) .76(.12) .68(.14) .14(.10) .20(.12) .99(.03) .99(.03) 2679 2319

Annotation: V(G) — variance explained by genetic factors for trait 1 and trait 2 (tr1, tr2); C(G) — covariance between trait 1 and 2 explained by genetic
factors; V(e) — residual variance for trait 1 and trait 2; C(e) — residual covariance between trait 1 and trait 2; Vp— phenotypic variance for trait 1 and trait 2;
V(G)/Vp — proportion of the phenotypic variance explained by genetic factors for trait 1 and trait 2; rG — genetic correlation between trait 1 and trait 2
(constrained between 0 and 1); n — number of individuals with data for both trait 1 and trait 2; values in parentheses are standard errors.
*The current version of GCTA does not report the residual correlation or its standard error. The residual correlation was derived here from the GCTA estimates
using the following algorithm: C(e)_tr12/(√V(e)_tr1 * √V(e)_tr2), whereas the standard error was calculated using: Var(re) = re * re * (VarVe1/
(4*Ve1*Ve1) + VarVe2/(4*Ve2*Ve2) + VarCe/(Ce*Ce) + CovVe1Ve2/(2*Ve1*Ve2) - CovVe1Ce/(Ve1*Ce) - CovVe2Ce/(Ve2*Ce)); SE(re) = sqrt[Var(re)],
where re is the residual correlation, Ve1 is the residual variance for trait 1, Ce is the residual covariance between two traits, VarVe1 is the sampling variance for
Ve1 (residual variance for trait 1), VarCe is the sampling variance for Ce, CovVe1Ve2 is the sampling covariance between Ve1 and Ve2, and CovVe1Ce is the
sampling covariance between Ve1 and Ce.

Fig. 1. Genetic influence is significant and substantial on family SES and
children's IQ and completely accounts for the association between family SES
and children's IQ. Although this model looks like a path model depicting the
results of a twin study, the within-family twin design cannot be used to assess
between-family environmental measures such as family-level SES as in the
present study. This model describes GCTA results based on DNA of unrelated
children. The top row of numbers indicates genetic and environmental
correlations, respectively. The bottom row of numbers indicates the proportion
of variance in SES and in IQ that can be attributed to genetic and non-genetic
factors. (That is, these are not standardized partial regressions that need to be
squared to estimate variance explained.)
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Bivariate GCTA analysis also indicates the extent to which
the phenotypic covariance between family SES and children's
IQ ismediated genetically. The phenotypic correlation between
family SES at age 7 and children's IQ at age 7 is 0.31. The genetic
contribution to this covariance is 0.29 (Table 2). In otherwords,
94% of the correlation between family SES and children's IQ is
mediated genetically. For family SES at age 7 and children's IQ
at age 12, 56% of the phenotypic correlation of 0.32 is mediated
genetically. The large standard errors for the estimates of
genetic correlations suggest that replication is needed before
interpreting the difference between the 94% versus 56% results
for IQ at ages 7 and 12, respectively. However, if the difference
is real, one possible explanation is that, although the pheno-
typic correlations between age-7 SES and IQ at ages 7 and 12 do
not change, the lower genetic contribution to the SES-IQ
correlation at age 12 might reflect increased environmental
influence outside the family (e.g., peers, teachers).

In summary, genetic influence is significant and substan-
tial on family SES, on children's IQ, and on the association
between family SES and children's IQ. Fig. 1 summarizes the
results for family SES at age 7 and children's IQ at age 7,
incorporating data from Table 2.

4. Discussion

Our analysis provides the first DNA-based evidence that the
well documented association between family SES and children's
cognitive development, routinely interpreted as an environmen-
tal effect, is substantially mediated by genetic factors. Previous
quantitative genetic research, largely using the twin design, has
shown that most ‘environmental’ measures involve significant
genetic influence and that associations between these environ-
mental measures and children's development are mediated
genetically (Plomin, 1994; Plomin et al., 2013; Vinkhuyzen et al.,
2010). GCTA adds importantly to this body of research in
two ways. First, because it uses DNA alone, GCTA sidesteps
concerns about the twin design such as the equal environments
assumption (Plomin, DeFries, Knopik, & Neiderhiser, 2013),
which might be especially relevant to measures of family
environment (Power et al., 2013). Second, many important
environmental factors such as family SES cannot be studied
using the twin design because they operate between families
(family general) rather than within families (child specific).
GCTA can be used to study between-family variables.

The main limitation of this study is the sample size.
Although a sample of 3000 unrelated children with genome-
wide genotypes and data on IQ and family SES is large bymany
standards, as noted earlier, GCTA has daunting demands for
power. Our sample size is just on the cusp of being able to
detect as significant the GCTA heritabilities of family SES, which
is about 20%. It should be reiterated that GCTA heritability
estimates are lower-limit estimates of twin heritability because
GCTA is limited to detecting the additive effects of the common
SNPs used in our genome-wide genotyping. On the other hand,
because we found such high genetic correlations, we have
good power to detect them. As noted earlier a sample of 3000
provides 80% power to detect a genetic correlation of 0.60.
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Although these results are surprising and provocative,
they do not in any way support the misguided notion that
heritability implies immutability. Nor do any specific policies
necessarily follow from finding genetic influence on family
SES and its correlation with children's cognitive development
because policies depend on values. However, our results do
underline the need to consider nature as well as nurture
when drawing policy implications from correlations between
ostensible environmental measures and children's developmen-
tal outcomes. Specifically, our results bear on the extensive
debate about social mobility, which has largely ignored the
fact that parents and their offspring are genetically related
(Saunders, 2012). Indeed, the correlation between parent and
offspring SES is used as an index of intergenerational
social mobility because it is assumed that SES advantages
are transmitted environmentally from parent to offspring
(Breen & Jonsson, 2005). For this reason, lower parent–offspring
correlations are thought to indicate social mobility. From this
environmental perspective, it follows that equal educational and
occupational opportunities will result in equal outcomes
between children so that parental SES would no longer
have any effect on children's cognitive development, education
or occupation. On the contrary, taking genetics into account
suggests that higher parent–offspring correlations indicate
social mobility. To the extent that genetics is important,
parents and their offspring will be correlated; removing
environmental sources of inequality will not remove this
fundamental resemblance between parents and offspring.

More broadly, it should be recognized that from a genetic
perspective, equal opportunity will result in relatively greater
genetic influence, as reflected in greater parent–offspring
correlations: As environmental differences diminish, varia-
tion that remains between children in their outcomes will be
due to a greater extent to their genetic differences. In other
words, heritability can be viewed as an index of meritocratic
social mobility.
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