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Nurture might be nature: cautionary tales and proposed
solutions
Sara A. Hart 1,2✉, Callie Little2,3 and Elsje van Bergen 4

Across a wide range of studies, researchers often conclude that the home environment and children’s outcomes are causally linked.
In contrast, behavioral genetic studies show that parents influence their children by providing them with both environment and
genes, meaning the environment that parents provide should not be considered in the absence of genetic influences, because that
can lead to erroneous conclusions on causation. This article seeks to provide behavioral scientists with a synopsis of numerous
methods to estimate the direct effect of the environment, controlling for the potential of genetic confounding. Ideally, using
genetically sensitive designs can fully disentangle this genetic confound, but these require specialized samples. In the near future,
researchers will likely have access to measured DNA variants (summarized in a polygenic scores), which could serve as a partial
genetic control, but that is currently not an option that is ideal or widely available. We also propose a work around for when
genetically sensitive data are not readily available: the Familial Control Method. In this method, one measures the same trait in the
parents as the child, and the parents’ trait is then used as a covariate (e.g., a genetic proxy). When these options are all not possible,
we plead with our colleagues to clearly mention genetic confound as a limitation, and to be cautious with any environmental causal
statements which could lead to unnecessary parent blaming.
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Most parents spend hours fretting over decisions about the
environment they provide to their children. The scientific literature
mirrors this idea. Across a wide range of studies from many
psychological domains, researchers often conclude that the
environment parents provide and children’s outcomes are causally
linked, through environmental transmission (see Box 1). For
example, a study examining the association of having a home
library as an adolescent and later adult literacy, numeracy and
technology skills drew our attention because of in-depth coverage
in the Guardian (https://www.theguardian.com/books/2018/oct/
10/growing-up-in-a-house-full-of-books-is-major-boost-to-literacy-
and-numeracy-study-finds). This study used a very rich and well-
powered dataset, and found a correlation between the number of
books in adolescents’ homes and literacy performance in
adulthood. They conclude that “growing up with home libraries
boosts adult skills”, inferring a causal connection1. This is depicted
in Fig. 1. Here we discuss how the correlation between the
environments parents provide, the “rearing environment”, and
their children’s outcomes can indeed be fully due to a causal
association, or importantly, can also be partly or fully due to a
genetic confounding, illustrated in Fig. 2 (see Footnote 1 in the
Supplementary Notes). After highlighting the problem, we suggest
ways that psychological scientists can examine research questions
related to the rearing environment and children’s outcomes in
ways that account for, or at least acknowledge, genetic
confounding.

GENETIC CONTROL OF EXPOSURE TO THE ENVIRONMENT
Decades of work from behavioral genetics show that children’s
traits are influenced by both genetic and environmental effects2,3.
Likely more surprising to hear for most is that genetic influences

are often seen on measures of the “environment”, suggesting that
the contexts surrounding children are partly under genetic
control4. For example, a meta-analysis found cumulative support
for genetic influences on the parenting children received5. This
idea, that there is genetic influence on exposure to environments,
is called a gene–environment correlation. A gene–environment
correlation describes the process by which a person’s genotype
influences their exposure to the environment6. It is certainly not
the case that genes are doing this directly, but instead genotypes
matter for aspects of our personality, behaviors and cognitions,
which then influence how we interact with our environment and
how others interact with us7. This concept of an individual
purposely and dynamically interacting with their surrounding
environment is not limited to behavioral genetics; similar
processes have been described in other literatures, for example
person-centered interactions8 and the Selective Optimization with
Compensation9.
Specifically, there are three types of gene–environment

correlations that can result in genetic confounds6. First, a “passive
gene–environment correlation” describes the association between
the genotype a child inherits from their parents and the
environment the child is raised in. Another way to think of it is
that genes are a third variable which influence both the rearing
environment a child receives as well as the child’s own traits, via
genetic transmission from parents to child. This means it is not
possible to draw causal conclusions between the rearing
environment and children’s traits. For example, home environ-
ments have been found to be less chaotic for children with high
effortful control, with results indicating that the same genes in
parents which contribute to the levels of structure in their home
(i.e., factors such as absence of noise and crowding, as well as
presence of structure and routine) are also transmitted to their
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children and contribute to effortful control10. Second, an
“evocative gene–environment correlation” is when a person’s
genetically influenced trait elicits, or evokes, a specific response
from others in the environment. For example, it has been found
that a person’s genes are associated with being rated as “more
likeable” by others, meaning how others perceive you as a social
partner, and then likely interact with you, is influenced by your
genes11. Third, an “active gene–environment correlation”
describes the association of a person’s genetically influenced
traits and the environments they select. For example, the
genetically influenced personality trait of socialization, measured
in childhood, was associated with exposure to risky environments
related to substance abuse in adolescence, in that children with

low socialization were exposed to more risky environments12. All
three have the potential to cloud the true combination of genetic
and environmental influences transmitted between parents and
children (i.e., genetic confounding), but it is theorized that passive
gene–environment correlations have a greater effect in child-
hood13, and as such passive gene–environment correlations are
the focus of our review.
To give an example of how (passive) gene–environment

correlations can result in genetic confounding in studies focused
on the rearing environment, a high impact finding reported that
parents with higher math anxiety have children with higher math
anxiety, solely due to the home environment14. The authors
attribute helping with math homework as the causal environmental

Fig. 1 An example of a direct environmental transmission effect.
Number of books in the home is thought to be an environmental
causal effect on children’s reading ability. Figure by ref. 66 available
at https://bit.ly/3gl8MVk under a CC BY 4.0 license.

Fig. 2 An example of how genetic confounding works (note, only
one parent drawn, for simplicity). Parents share genes related to
reading ability with their children, and also control the number of
books in their home. This creates gene–environment interplay. It is
important to note that the environmental effect may still have a
causal role, even with gene–environment interplay. If genes play a
role but are not modeled (as in Fig. 1), the correlation between the
environmental measure and the child’s trait is genetically con-
founded. Here, the role of genes is modeled, allowing for an
estimation of the genetic effect and the environmental effect. Figure
by ref. 66 available at https://bit.ly/31c52z9 under a CC BY 4.0 license.

Box 1 A glossary of some key terms

Environmental transmission (also
called: cultural or phenotypic
transmission):

Transmission of traits from parents
to their children by non-genetic
means. It is used to describe when
parents’ traits impact their child’s
traits through the environment they
create.

Familial Control Method: Using a measure of the same trait in
the parent as the child as a covariate
in models estimating the effect of
the rearing environment. That cov-
ariate then serves as a proxy control
for the genetic transmission effect.

Familial transmission: Transmission of traits from parents
to their children, both by genetic
and non-genetic means. Familial
transmission gives rise to
parent–child resemblance.

Gene–environment correlation: Genetic influence on the exposure
to the environment. There are three
types: passive, evocative, and active
(see text).

Genetic confounding: Confounding due to
gene–environment correlation. Here
we focus on confounding due to a
passive gene–environmental corre-
lation, describing a situation where
the influence of parental traits on
children’s traits is not (solely) due to
environmental transmission.

Genetic transmission: Transmission of traits from parents
to their children by genetic means
(i.e., children inherit genes from
their parents for a given trait).

Genotype: An individual’s complete heritable
information. A combination of
alleles for a specific gene or across
the whole genome.

GWAS: Genome-wide association study.
Identifies genetic variants (i.e., SNPs)
across the genome that are linked to
a trait.

Phenotype: An individual’s observable traits, like
eye color, reading ability, or
parenting style.

SNP (pronounced “snip”): Single nucleotide polymorphisms
(SNPs). A single position in a DNA
sequence that varies among indivi-
duals. For example, if a particular
SNP can be nucleotide G or nucleo-
tide C, then individuals can have GG,
GC, or CC (one nucleotide from each
parent). SNPs are the basis for
genome-wide association studies.
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factor, concluding that parents with high math anxiety should not
help with their children’s math homework. This causal connection
could exist, but equally parents with math anxiety also pass on
genetic (and environmental) risks related to both lower math
cognition and higher math anxiety15. Because this genetic
transmission was not controlled for, causal claims and associated
parenting advice are not justified.
Another example, this time from the medical literature,

examined the intergenerational transmission of smoking behavior
from parents to adolescents, concluding that “the attitudes,
beliefs, and behaviors toward [adolescent] cigarette use are
learned through [parent] modeling”16. Again, this study focused
on the environmental transmission from parents to offspring
without accounting for the transmission of genes related to
smoking behaviors and risk-taking behaviors17. Furthermore, the
authors conclude that smoking cessation interventions in adults
can reduce smoking in subsequent generations. Parent-centered
interventions might help to reduce adolescent smoking, but what
is overlooked is that children carry their own genetic risks for
smoking, and direct intervention with the adolescents18 could
more strongly influence their smoking behaviors.
We are certainly not the first to point out this familial

transmission confound within the ecological literature. Indeed,
nearly 40 years ago, Scarr and McCartney proposed that “the
human experience and its effects on development depend
primarily on the evolved nature of the human genome”13, and
nearly 30 years ago Plomin and Bergeman19 addressed the
prevalence of genetic confounding by illustrating that genetic
influences are found on most if not all environmental measures.
Since then, several reviews have pointed to multiple examples
from parental warmth to alcohol use to depression where causal
pathways from parent behavior to child outcomes are reported,
without accounting for genetic confounding20–22. These reviews
have called for researchers to use caution with causal statements,

and to address genetic confounding in their limitations. Further,
they have asked for journal editors and reviewers to be better
watch-dogs in this endeavor; to insist that manuscripts adhere to
these standards. However, based on our experience listening to
conference presentations and reading press releases and news-
paper articles, we believe these guidelines are not yet being met.
We believe a reason why these previous reviews have not

successfully changed minds and methods is because they have
not given actionable correlational design solutions to researchers
outside of behavior genetics. Therefore, when faced with not
doing the work or publishing work with only a potential genetic
confound, researchers have chosen the latter. Therefore, in the
following section we will give many possible solutions, from
genetically sensitive designs to design solutions that work in lieu
of genetically sensitive data, and finally, a renewed call for
changes in reporting standards.

WHAT RESEARCHERS CAN DO
The designs that we discuss below present a not all-encompassing
but global overview of genetically sensitive designs and
polygenic-scores (PGS) designs, and include a genetic-proxy
control design (the “Familial Control Method”), which we
recommend when genetically sensitive data are not available, as
well as several other proxy control designs. These designs vary in
how well they disentangle the genetic confound and in how
challenging they are in terms of obtaining and analyzing the data.

Genetically sensitive designs
Genetically sensitive designs are ideal for studying genetic and
environmental influences and their interplay. These designs take
advantage of samples of related individuals that differ in genetic
relatedness (e.g., monozygotic and dizygotic twins; Fig. 3) or differ
in environmental exposure (e.g., monozygotic twins reared apart).

Fig. 3 The logic behind twin research. The scatter plots depict how much the two types of (reared-together) twins resemble their co-twin on
reading ability. Each dot represents the reading scores of both children within a pair. It can be seen that monozygotic twins are much more
alike. From this, it can be concluded that differences between children are largely due to genetic differences. The data come from van Bergen
et al.34 and represent word-reading fluency test scores in Grade 2 of twin pairs with complete data. The score is the number of words read
correctly within 1min. In this sample, the monozygotic and dizygotic twin correlations were 0.84 and 0.46, respectively, which yield estimates
using the Falconer formulas67 of A= 0.76, C= 0.08, and E= 0.16 (see Fig. 4). Figure by ref. 66 available at https://bit.ly/3k4w2Ji under a CC BY
4.0 license.
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By far the most commonly used genetically sensitive design is the
classical twin design. This design works because twins share either
all (identical or monozygotic twins) or half (non-identical or
dizygotic twins) of their genes23. Both types of twins share some
parts of their environment such as their home, school, and
neighborhood (referred to as common or shared environmental
influences), and experience some aspects of their environments
separately from each other such as peer groups, hobbies, or illness
(referred to as unique or non-shared environmental influences). By
comparing the average correlation between the two twins in a
twin pair on a trait for monozygotic versus dizygotic twins,
variance can be partitioned into additive genetic influences or
heritability, shared environmental influences, and non-shared
environmental influences (see Footnote 2 in the Supplementary
Notes) (Fig. 4). Heritability of a trait is indicated if the correlation
between monozygotic twins is higher than that of dizygotic twins.
Shared environmental influences are estimated by subtracting the
heritability estimate from the monozygotic twin correlation, and
the estimated shared environmental influences is larger when the
correlation coefficient between monozygotic versus dizygotic
twins are close in magnitude. Finally, non-shared environmental
influences are estimated by subtracting the monozygotic twin
correlation from one.
With regard to disentangling possible genetic confounds and

instead studying the direct effect of specific aspects of the rearing
environment, classical twin studies are limited because both type
of twins commonly share their rearing environments. For example,
twin children growing up together are exposed to the same home
library or household income, so monozygotic and dizygotic twin
resemblance cannot be compared for these types of environ-
mental measures. However, a classical twin study can begin to
separate the direct effect of the home environment in two cases.
First, child twins can be asked to individually rate their own
rearing environment (Fig. 4). Since individual experiences are
correlated with genetic predisposition, monozygotic twins often

rate their experiences of the home environment more similarly
with each other than dizygotic twins do. Therefore, when child
twins can report their own ratings of their rearing environment,
these estimates can serve to differentiate monozygotic and
dizygotic twins. Twins who are children might not differ in how
many books they have in the home, but they will likely differ in
how much their parents read to them, or how much their parents
monitor their reading. In these cases, the extent to which aspects
of children’s rating of their rearing environment do not show
entirely environmental influences, in other words, some herit-
ability is measured on the “rearing environment”, this infers that
there is a genetic confound, via a passive gene–environment
correlation4,19. Using child twin ratings of their rearing environ-
ment, Hanscombe et al.24 found that 22% of the variance of chaos
in the home was attributable to genetic factors, and moreover,
37% of association between chaos in the home and school
achievement was due to shared genes. This suggests that this
“environmental” variable of chaos in the home, measuring noise
and lack of structure in the home, is partially genetically
confounded. This means that chaos in the home does not have
a completely direct, or causal role, on children’s school
achievement.
The second way that the classical twin model can be used to

identify the direct effect of the home environment, free of genetic
confounding, is by focusing on the environment that adult twins
create (see Fig. 4, but replace “reading ability” with “books in their
home” or the like). When twins are adults they can differ in how
many books they own and the income of their household, so
genetic and environmental influences on their home environ-
ments can be studied. These studies quantify genetic and
environmental influences on the home environment that twins
create4, but they do not quantify the influence of these home
characteristics on outcomes in their offspring.
Other genetically sensitive designs that can address the direct

effect of the rearing environment, after accounting for genetic

Fig. 4 Simplified representation of the classical twin model. In behavioral-genetic models, the three sources of influences on individual
differences are commonly labeled by the letters A, C, and E, respectively, stemming from Additive genetic influences (also known as
heritability, and sometimes represented by an h2 instead on an A), Common environmental influences (also known as shared environmental
influences), and non-shared Environmental influences (and measurement Error). Note that the latter are by definition uncorrelated between
twins. See for a detailed representation of the classical twin model, for example, Figure A.9 in ref. 23; rMZ=monozygotic twin correlation; rDZ=
dizygotic twin correlation. Figure by ref. 66 available at https://bit.ly/2Xkr29P under a CC BY 4.0 license.
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confounding, are adoption studies, within-family sibling studies,
and twin-family studies25. In an adoption design, resemblance
between adopted children and their biological parents is due to
heritability (plus the prenatal environment). In contrast, resem-
blance between adopted children and their adoptive parents is
fully due to the environment that the parents have provided.
Another way to examine the rearing environment while partially
controlling for genetic confounding is to use non-twin biological
siblings within a family26,27. Because biological siblings, like
dizygotic twins, share half of their genes, sibling resemblance on
a trait suggests the influence of genetic factors along with some
shared environmental influences. However, non-twin siblings can
differ on several aspects of the rearing environment such as family
size or parental health and age at birth, therefore, any dissimilarity
between siblings can help to determine the influences of these
non-shared aspects of the rearing environments on a given trait.
Sibling designs have also recently incorporated the use of
genome-wide PGS which strengthen their ability to control for
confounding by disentangling direct genetic influences from
gene–environment correlations28,29. PGS designs are discussed in
more detail, below.
Twin-family studies include twins and their family members, like

young twins and their parents, or adult twins and their children.
The latter, referred to as children-of-twins design (Fig. 5), is
particularly suitable to study the effect of children’s rearing
environment, free of genetic confounding21. Put simply, consider
a mother who has an identical twin sister. The mother’s son shares
half of his genetic variants with his mother, but also with his aunt.
If for a given trait he resembles his mother as much as his aunt,
this suggests that the resemblance is fully due to shared genes.
Conversely, if he is more like his mother than aunt, this
demonstrates that the resemblance between mother and son is
at least partially due to the environment provided by his mother
(see Footnote 3 in the Supplementary Notes). There are even more
complex extended twin family designs, described well in Keller
et al.30 and McAdams et al.31.

In sum, genetically sensitive designs can assess whether the
rearing environment is influencing children’s outcomes, outside of
genetic confounds. Although they are observational and hence
cannot establish causality, or the absence thereof, they can
strongly infer causality above and beyond the majority of typical
observational studies. An important point to make is if a
genetically sensitive study suggests no direct causality of the
rearing environment on children’s outcomes, it does not imply
that intervening is pointless. Successful parenting interventions
are able to experimentally induce changes in parents’ skills or
behaviors, which then causally improve child outcomes. Thus,
observational studies, such as all the genetically sensitive designs
described here, and experimental studies (preferably randomized
controlled trials32) answer related but different questions: the first
on “what is”, so causality in the natural situation, and the second
on “what could be”, so causality due to intervening33,34.
Returning to genetically sensitive designs, the disadvantage is

that they require access to such data, which are challenging to
collect and analyze. We note for a reader interested in using twin
data to better answer their questions about the direct role of the
rearing environment, twin datasets are increasingly becoming
publically available. For example, TwinLife (https://www.twin-life.
de/en), TEDS (http://www.teds.ac.uk/researchers), NLSY kinship
links (http://nlsy-links.github.io/NlsyLinks/), Netherlands Twin Reg-
ister (http://tweelingenregister.vu.nl/research), and others are
available online or via application. In addition, there is a data
sharing culture in the behavioral genetics community, and most
will likely share when asked. We suggest that researchers consider
using these resources to better test their research questions.

PGS designs
A new avenue to study intertwined genetic and environmental
effects employs genome-wide PGS. This method relies on
genome-wide association studies (GWASs) which pinpoint genetic
variants (i.e., single nucleotide polymorphisms (SNPs)) that are
linked to a trait (Fig. 6). The most powerful GWAS to date (N > 1

Fig. 5 Simplified representation of the children-of-twins model. In the given example, the (adult) twins are sisters. The genetic transmission
(left hand side) is fixed at 0.50 because parents and children share 50% of their genome. The other set of genes that influence the child trait
(bottom left) are genetic influences that explain variance in the child trait but not the parent trait. The crucial test for presence of
environmental transmission is whether the p-path is significant. Note that ‘child’ can refer to child or adult offspring. See, for the full and
detailed model, ref. 31. Figure by ref. 66 available at https://bit.ly/2D0aNYJ under a CC BY 4.0 license.
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million) has identified 1271 genetic variants associated with
educational attainment35. Each of them has a tiny effect, but these
tiny effects can be summed in a PGS. The PGS, calculated for all
(unrelated) individuals in an independent sample, explains 12% of
the variance in educational attainment. Note that twin studies
estimate the heritability of educational attainment at 40%36, so
the PGS currently captures less than one-third of this; the
remainder is the “missing heritability”37.
As we speak, novel methods are being designed to disentangle

nature and nurture that draw on PGS. Below, we list some
examples of recent developments. First, Dolan et al.38 bring PGS
into the classical twin design. By doing so, one can estimate the
gene–environment correlation, rather than assume it is absent.
Second, Lee et al.35 and Selzam et al.29 found that for cognitive
traits, the predictive power of a PGS within a family was about
50% lower than across unrelated individuals. The attenuation of
the PGS’ predictive power within families suggests that passive
gene–environment correlations (as captured by the PGS) con-
tribute to children’s cognitive development. As a third example,
both Kong et al.39 and Bates et al.40 separately proposed the same
design incorporating parental and offspring PGS to disentangle
environmental transmission from genetic transmission (i.e.,
account for the genetic confound between the home environ-
ment and child outcomes). In both cases, the researchers split the
genetic variants of the parents in half—those that the parent had
and had not transmitted to the offspring—and calculated for each
half the PGS for educational attainment (Fig. 7). The researchers
do this because of the biological fact that a parent only transmits a
random half of their genes to their child. And for this design to
work, both parents and their child must be included (but see
ref. 41 for a work around). Amazingly, what the researchers found
was both sets of parent PGS predicted adult offspring’s educa-
tional attainment. The predictive value of the transmitted PGS was

unsurprising, as this captures directly transmitted genetic effects.
But the predictive value of the non-transmitted PGS was not
certain. If non-transmitted PGS influence children’s traits, this
effect must be environmental, likely acting through rearing
behaviors that affect the child’s development. Kong et al.39 aptly
coined this genetic effect through the rearing environment
“genetic nurturing”. Belsky et al.42 did a similar analysis but with
an updated PGS score. Interestingly, when this design is expanded
to include grandparents, there is little evidence for genetic
nurturing from the grandparent generation43. Fourth, Wertz
et al.44 incorporated both PGS of mothers and children, as well
as direct measures of parenting. They showed that mothers’
cognitive stimulation explained the relation of the maternal non-
transmitted PGS to child educational attainment. This indicated
that there is a direct environmental transmission of parenting on
children’s outcomes, unconfounded by correlated genetic trans-
mission. Finally, de Zeeuw et al.45 and Willoughby et al.46 both
used the full genetic-nurturing design (employing DNA of children
and both parents) and found (thereby replicated) genetic-
nurturing effects on adults’ educational attainment. Crucially, for
outcomes in childhood, academic achievement and ADHD-
symptoms, Zeeuw et al.45 only found direct genetic effects; no
genetic nurturing. They concluded that a large contributor to why
the rearing environment predicts child outcomes may well be
intergenerational transmission of genetic effects.
At the moment, measured genetic variants only explain small

proportions of variance and the papers mentioned above may be
seen by behavioral researchers as only a proof-of-principle.
Nevertheless, these exciting developments will gain in strength
when increasingly larger GWASs of all sorts of traits yield more
refined PGS. By this we mean that PGSs will begin to explain more
and more portions of the variance in outcomes we are interested
in, with the hope that eventually they will reach the theoretical

Fig. 6 A polygenic score (PGS) indexes an individual’s genetic predisposition for a cerain trait or disease (see also68). Left panel: A
published genome-wide association study (GWAS) serves as an external database. In an extremely large sample, a GWAS estimates tiny
associations (b̂) between the trait of interest and millions of genetic variants. Specifically, the genetic variants studied are single-nucleotide
polymorphisms (SNPs), located across the genome. Middle panel: Polygenic scoring can be done in a sample that was not part of the GWAS.
For each individual in this sample, the SNP effects (b̂) are multiplied by the number of trait-associated alleles (0, 1, or 2) the person carries.
These values are summed across all SNPs to arrive at the individual’s PGS. Right panel: The resulting PGSs across individuals in that sample are
normally distributed. If the trait of interest is a disorder, like ADHD, the individuals in the right tail have the highest genetic risk for developing
ADHD. PGSs are not yet strong enough for predictions at the individual level, but see the main text for examples of how PGSs advance science
at the group level. Figure adapted from ref. 69. Figure by ref. 66 available at https://bit.ly/2BPcCXP under a CC BY 4.0 license.
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upper limit of SNP heritability. Even then, using them as a genetic
control (i.e., as a covariate) will continue to underestimate the total
genetic effects we are looking to control. PGSs account for only
one type of genetic effect, namely common variants. There is
increasing evidence that traits such as educational attainment are
influenced by not only common variants, but also rare
variants47,48. Another concern is that new work is indicting that
a PGS is not a measure of only genetic variance. Instead, it likely
represents not only causal genetic effects, but genetic ancestry,
assortative mating, gene x environment interactions, direct
environmental influences (i.e., genetic nurture), and environmen-
tal confounds from, for example, SES49,50. Therefore, a measure of
genes (i.e., a PGS) can predict trait variance via environmental
routes. This parallels our earlier notion that a measure of the
environment can predict trait variance via genetic routes.
In summary, at the moment the PGS is not a perfect “genetic

control”, as it does not account for all of the genetic effects and
also accounts for other effects, including the very environment we
are interested in. But, we believe that next to no control, using a
PGS as a statistical control is still better. Costs of genotyping are
falling and the number of cohorts with genotype data is
growing51. We predict that in the not-so-far future, using simply
and cheaply collected genotypic information will become a
regular part of the behavioral researchers’ data collection protocol,
especially as the predictive validity of the PGSs increases. This
means that PGSs will allow researchers to partly control for genetic
confounds in their models. We foresee that it will be easier to use
PGSs than rely on genetically sensitive designs.

Genetic-proxy control designs: the Familial Control Method
The designs discussed above are the current gold-standards.
However, as these types of samples discussed above are not

currently easy to collect and analyze, we propose here a useful
work around52,53. Our colleagues can measure the same trait in
both the parents as the child, and use the paternal and maternal
traits as covariates. We advise to assess the traits in both parents
(but acknowledge the challenge that brings), because the child
shares only 50% of their genes with one parent, but all of their
genes with both parents. Hence, both parents are needed to best
tag the child’s genetic liability. The parental traits, included as two
covariates, then serve as a proxy for the familial transmission,
including genetic transmission. In doing so, you have a proxy
control for the familial effect. Hence, we term this method the
Familial Control Method.
The Familial Control Method is designed for traits that are

mostly transmitted from parent to child through genes rather than
the environment, like reading ability54,55 (see Footnote 4 in the
Supplementary Notes). Van Bergen et al.53 capitalized on this in
studying whether children’s reading ability is influenced by the
home literacy environment, like reading habits of the parents and
the number of books in the home. Analyses consisted of straight-
forward step-wise regression analyses, illustrated in Fig. 8. The
home literacy environment correlated with children’s reading
ability, but for most home-literacy indicators the effect was no
longer significant after accounting for the reading ability of the
parents. This suggests genetic confound rather than a genuine
environmental effect. The one exception was the number of books
children grow up with, which did explain variance over and
beyond parents’ reading skills (Fig. 8). This suggests a genuine
environmental effect on children’s reading by the number of
books itself, or something related, like the value that the family
places on reading45.
A similar approach was taken by Hart et al.52 in studying the

effect of the home numeracy environment on children’s math
ability. When a parent’s math ability was included in the model,

Fig. 7 Simplified representation of the genetic nurturing design. In this design, one needs genotypes of parents and offspring, and a
measured trait in the offspring generation only. The trait in the parents, for example educational attainment, is unobserved and indexed by a
polygenic score of, in this example, educational attainment. The child receives half of the genotypes of father (top left) and mother (top right)
and these transmitted alleles influence the child trait directly. The parental alleles that the child does not receive can still influence the child
trait indirectly, via genetically influenced behaviors in the parents (denoted by the dotted genetic-nurturing paths). Genetic nurturing is
present if the polygenic score of the untransmitted alleles explains a significant proportion of the variance in the child trait. The proportion of
variance explained by the polygenic score of the transmitted alleles include both genetic nurturing and direct effects. Note that ‘child’ can refer
to child or adult offspring. T= transmitted, NT= non-transmitted. Figure adapted from ref. 39. Figure by ref. 66 available at https://bit.ly/
2PjpkRu under a CC BY 4.0 license.
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some effects of aspects of the home numeracy environment on
children’s math ability were attenuated, but most held up. A note
of caution is that the skills of only one parent could be obtained
and controlled for, so the study lacked a proxy for the genetic
liability passed on by the other parent. The authors concluded that
doing more math-related activities with your children does seem
to directly boost their math.
We advise researchers who are interested in applying the

Familial Control Method to search first in the literature for
adoption and twin-family studies. Such studies with the outcome
trait of interest (e.g., reading ability) assessed in both the parent
and the offspring generation, test whether parent to offspring
transmission is mainly genetic or environmental in nature54,55.
However, such studies are scarce. If such studies for the trait of
interest do not exist, a good starting point are classical twin
studies. Traits with no or a small influence of the shared
environment (referred to as C), like neurological traits, are more
likely to be transmitted just genetically compared to traits with
large shared-environment influences, like social values. Results of
meta-analyses of twin studies on a very large number of traits can
be found in Polderman et al.2 and the accompanying webtool
(http://match.ctglab.nl/).
The Familial Control Method, using a parental trait as genetic

proxy, is not watertight, and certain assumptions must be made
for it to be effective for your research question (see Footnote 5 in
the Supplementary Notes). First, if, for a certain trait, parent–child
resemblance is not only due to genetic transmission but also
environmental transmission, the Familial Control Method can be
too conservative, as it also takes away some of the variance due to
true environmental effects. However, one could argue that for
many situations, being slightly too cautious in causal claims about
environmental influences is less harmful than being too lax.
However, this might not be the case for all researchers, and we
encourage behavioral researchers to consider if being too
conservative is actual harmful (e.g., for the effect of an unsafe
home environment on child psychopathology) Second, as
mentioned earlier, the trait measured in the parents should be

the same or highly similar as the trait measured in the child. This
means that traits which are not at least reasonably the same in
childhood as adulthood (i.e., across birth cohorts and across the
lifespan) would not work in this design. So the trait should be at
least reasonably measurement invariant and relatedly, show
reasonable genetic stability. Fortunately, for many phenotypes,
children’s phenotypes are simply developmental precursors to the
adult phenotypes (e.g., for reading ability56, and for ADHD57). A
researcher must decide if the mentioned assumptions are
appropriate for their trait of interest, but fortunately we do
believe that these assumptions are reasonable for most to make.
Third, correlations among the parent and child trait and the
environmental measure of interest will be attenuated by
measurement error. To reduce measurement error, one can do
regressions according to the Familial Control Method in a
structural equation modeling framework, with multiple indicators
per construct. One can fit a model with as the outcome the latent
child trait of interest, and as (correlated) predictors, the latent
traits of both parents and the environmental measure of interest.
If dropping the regression path ‘environmental measure → child
outcome’ leads to a significantly worse model fit, this implies that
the environmental measure is associated with the outcome above
and beyond the familial effect. If the trait of interest is genetically
transmitted, this equates to above and beyond genetic confound-
ing, so suggests a direct environmental influence. The effect size
here is given by the difference in explained variance in the child
outcome of the models with and without the ‘environmental
measure → child outcome’ path. Adopting a structural equation
modeling framework with latent variables is especially advisable
for constructs that are notoriously hard to measure reliably.
Another advantage of this framework, compared to stepwise
regressions, is that families with missing data can be retained.
It is likely the case that for most behavioral researchers

interested in the direct role of the rearing environment, the
Familial Control Method is currently the most feasible proxy
genetic control. It does not require data of twin or adoption
families, nor collecting DNA samples. In terms of prediction,

Fig. 8 Visualization of the Familial Control Method, in which a child outcome is predicted in a step-wise regression, with in the first step
the familial control measure (i.e., the trait in both parents) and in the second step the measure of the environment. The findings that are
depicted here come from van Bergen et al.53. The key question is whether the environmental measure explains variance beyond the familial
effect, as this indicates a genuine environmental effect. In the example given, this was 5% and significant. This was negligible and non-
significant for the other environmental measures reported in ref. 53. Figure by ref. 66 available at https://bit.ly/2Pfjelh under a CC BY 4.0 license.
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parental traits capture more of the variance in children’s outcome
than polygenic scores, so likely also capture more of the genetic
confound. For the example of reading ability, it has been found

that the abilities of both of the parents explain 21% of the ability
of children58. In comparison, polygenic scores (based on the
educational-attainment GWAS) have been found to explain only

Fig. 9 Decision flowchart for determining how to control for genetic confounding when examining the rearing environment. DK= don’t
know. Figure by ref. 66 available at https://bit.ly/3gkM6Et under a CC BY 4.0 license.
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2–5% of reading ability in children59, and more recently 5–14% of
“educational achievement” (including reading, writing, speaking,
listening, and mathematics) in ages 7 to 16 years60. Certainly this
proportion of variance explained from simple polygenic scores is
not trivial, and the predictive ability of polygenic scores is
anticipated to increase in the coming years. However, for most
behavioral scientists the trait in the parents is not only easier to
measure, but currently also a better predictor. On a related note,
the value of parental traits as predictors of child outcomes has
been used for decades in studying precursors of developmental
disorders. In such family-risk studies, children with a family history
of say dyslexia, attention-deficit/hyperactivity disorder or autism
are followed from an early age, before the disorder manifests
itself. These children have an increased risk to develop the
disorder61,62.

Other proxy control designs
Other proxy controls such as sociodemographic factors (e.g., SES)
have been used ubiquitously, but these statistical adjustments are
not capable of accounting for genetic confounding as adequately
as the Familial Control Method, for several reasons. First, although
sociodemographic factors such as educational attainment have
been significantly associated with genetic factors through twin
studies (40%36) and GWAS (~14%35), the estimates are less than
unity which indicates that genetic influences are not entirely
responsible for individual differences in SES. Indeed, work
examining the intergenerational transmission of SES has sug-
gested that both genetic and environmental transmission
occurs63. In this scenario where SES is transmitted through
genetic and environmental pathways, when controlling for SES in
data analyses, a proportion of variance attributable to other
background or environmental factors is also being controlled for
in the model, unintentionally leading to reduced associations
between potentially important family-level predictors and child
outcomes. In other words, you’d be throwing the baby out with
the bathwater.
On the other hand, controlling for SES does not actually control

for all of the genetic confounding. Say a researcher is interested in
controlling for genetic confounding when examining the direct
influence of books in the home on children’s reading. Parental SES
is a proxy for parental reading skill, but not a perfect correlate
(average correlation is 0.2664). Controlling for parental SES would
not control for all of the potential genetic confounds on the
association between books in the home and children’s reading
ability. In conclusion, when controlling for SES, other potential
sources of environmental variance are also being removed from
the prospective models, and at the same time would not capture
the extent of genetic confounding. We believe this would happen
with other proxy control measures as well, outside of the Familial
Control Method described above.

CONCLUSION
Here we have laid out numerous ways that genetic confounding
can be controlled for when examining the rearing environment,
summarized in a decision flowchart (Fig. 9). We can certainly
foresee times that none of these options are possible. Therefore,
we conclude that in those instances, our colleagues need to
clearly mention the possible genetic confounding as a limitation,
and to be cautious with any environmental causal statements
which could lead to unnecessary parent blaming or to interven-
tions that are a waste of time and resources. To return to our first
example, expecting all homes to have plenty of books is an
idealistic goal, as it would surround all children with the
opportunity to read if they wished. But unfortunately, having
the opportunity to read as one wishes does not unlock the code of
reading for all children. Reading is a skill that requires direct

instruction and practice, and children with a family history of
dyslexia themselves have a 45% chance of dyslexia despite
adequate instruction and practice61. Simply having books around
the home is not enough65, yet the message that parents are
getting is that it is. The take home messages from that are that
either parents who do not have the resources for a home library
are hurting their children, or parents with children struggling to
read are at blame because they did not have quite enough books
in the home. This is unfair and inaccurate. In the end, we believe
that it is important to discover true environmental effects as well
as how genes and environments interplay, especially when
malleable, because then we can focus as a field on creating and
testing interventions that have a greater chance of directly
improving children’s outcomes.

Reporting summary
Further information on experimental design is available in the
Nature Research Reporting Summary linked to this paper.
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