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The last two decades have witnessed a considerable 
interest in cognitive training. Not only is cognitive train-
ing a multibillion-dollar industry (Ahuja, 2019), but its 
techniques are also used by large organizations, such 
as the U.S. military, and companies such as Cogmed, 
Lumosity, and Posit Science are often featured in the 
news. According to its proponents, cognitive training 
enhances children’s educational achievements, improves 
adults’ decision-making abilities, and alleviates the 
effects of aging on cognition. To try to support these 
claims, independent researchers and companies directly 
involved with cognitive training have conducted a sub-
stantial number of experiments.

The hypothesis that general cognitive abilities can 
be improved by cognitive-training tasks of fairly short 
duration is certainly counterintuitive to anyone familiar 
with the accumulated literature on intelligence and cog-
nition. Considerable research indicates that fluid intel-
ligence and working memory (WM) capacity cannot be 
improved through cognitive interventions (e.g., Deary, 

2001; Shipstead et  al., 2012). Likewise, substantial 
empirical evidence shows that learning and skill acqui-
sition are domain-specific (e.g., Gobet, 2016; Sagi & 
Tanne, 1994; Simon & Chase, 1973). Showing positive 
effects of cognitive training would invalidate claims 
about the inflexibility of intelligence, WM capacity, 
learning, and expertise. There is no doubt that this would 
constitute a paradigm shift in psychology (Hurley, 
2013), as is made clear by cognitive-training research-
ers. For example, Jaeggi et al. (2008) stated that “thus, 
in contrast to many previous studies, we conclude that 
it is possible to improve Gf without practicing the test-
ing tasks themselves, opening a wide range of appli-
cations” (p. 6829), and Green and Bavelier (2003) 
concluded that “therefore, although video-game playing 
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may seem to be rather mindless, it is capable of radi-
cally altering visual attentional processing” (p. 536).

An objective consideration of the evidence shows 
that these optimistic predictions have not been borne 
out by the data. The best way to evaluate the empirical 
evidence is to carry out meta-analyses, and we discuss 
the conclusions of several recent meta-analyses that 
covered WM training, video-game playing, chess play-
ing, music, and exergame. Despite this contradicting 
evidence, researchers in the field maintain a high level 
of confidence that cognitive training is effective to 
improve general cognitive abilities, as exemplified recen-
tly by an article written by a group of 48 cognitive-
training researchers (Green et al., 2019). Given that this 
article assembles many of the leading researchers in 
the field, we discuss it at some length in the second 
part of our article.

We argue that one of the reasons for this misplaced 
optimism is that the field, by and large, has ignored the 
role of study artifacts. We therefore spend a fair amount 
of space to communicate two critically important points 
mostly ignored in the literature about cognitive training. 
First, variability in the effect sizes obtained by different 
types of interventions does not necessarily imply that 
there are true differences between them: These differ-
ences might be simply due to the effects of sampling 
error and other kinds of artifacts. Second, before any 
conclusion can be reached about the variability of mod-
erating variables, it is imperative to evaluate whether 
this variability is genuine (true heterogeneity) or due 
to random error.

Defining Terms

Before diving into the details of our arguments, it is 
important to define key terms. Cognitive training refers 
to interventions using cognitive tasks or intellectually 
demanding activities, the goal of which is to enhance 
general cognitive ability (Sala & Gobet, 2017b, 2019). 
Thus, our definition includes not only “brain-training” 
tasks (i.e., tasks practicing basic cognitive abilities to 
enhance performance on other cognitive tasks, includ-
ing everyday activities; Simons et  al., 2016) but also 
activities such as music learning and video-game play-
ing.1 This definition is fairly standard; for example, 
Strobach and Karbach’s (2016) book on cognitive train-
ing also includes a broader variety of activities than 
those covered by brain training, and so do numerous 
articles on the topic (Buschkuehl & Jaeggi, 2010; Katz 
et al., 2018; Simons et al., 2016; Taatgen, 2016).

The question of “transfer” is a central question in 
cognitive-training research. In line with the literature 
(e.g., Donovan et al., 1999), we define near transfer as 
the generalization of acquired skills across two (or 

more) domains that are closely related to each other 
(e.g., studying algebra to be better in geometry) and 
far transfer as the generalization of acquired skills 
across domains that are only loosely related to each 
other (e.g., studying algebra to improve in Chinese).2 
Although this definition of transfer is qualitative and 
there are undoubtedly some ambiguous cases, in most 
cases, it is fairly easy to decide between near and far 
transfer. Everybody agrees that using a 3-back task after 
2-back training is near transfer and that testing the 
effect of this training with an IQ test is far transfer. In 
addition, it is possible to use a more graded classifica-
tion, such as “nearest transfer” (tasks that are the same 
as or similar to those used during training) and “less 
near transfer” (e.g., tasks that are different but still are 
aimed at improving performance in memory tasks; see 
Sala & Gobet, 2020b).

Our broad definition of cognitive training allows one 
to ask whether cognitive-training methods, taken as a 
group, provide broad cognitive and academic benefits 
(far transfer). We note that many researchers in the field 
would argue that this question is not legitimate. For 
example, Green et al. (2019) took as a starting point 
that “each individual type of behavioral intervention for 
cognitive enhancement (by definition) differs from all 
others in some way, and thus will generate different 
patterns of effects on various cognitive outcome mea-
sures” (p. 4). We believe that this hypothesis should be 
tested empirically rather than being accepted by fiat. 
In fact, as we show below, we have tested it and found 
that with respect to far transfer, it is incorrect.

On the Importance of Sampling Error 
and Other Artifacts

In the first chapter of their book, Schmidt and Hunter 
(2015) presented a table summarizing the results of 30 
studies on the link between job satisfaction and organi-
zational commitment. They invited the reader to reach 
a conclusion about the strength of this link and about 
the variables that might moderate it and to draw implica-
tion for theory. The correlations ranged from –.10 to .56. 
Out of the 30 studies, 19 found a significant correlation, 
and 11 did not. Schmidt and Hunter discussed several 
patterns apparent in the data. For example, if only 
younger workers are considered, 19 out of the remaining 
23 studies showed a significant correlation. Another pat-
tern is that a significant correlation was found for 83% 
of the studies carried out in large organizations but only 
50% in small organizations. Hence, the data seem to 
support the theory that organizational commitment 
grows over a 10-year period but then plateaus.

In fact, the data were generated by a Monte Carlo 
run in which the correlations were randomly sampled 
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from a distribution with a population correlation of .33 
and sample size was randomly selected from a distribu-
tion with a mean of 40. The organizational character-
istics were allocated random values for each study. 
Therefore, the variation in the results were due to only 
chance (i.e., sampling error), and the large departures 
from the mean were obtained with small samples. 
According to Schmidt and Hunter (2015), this is a com-
mon situation in the psychological literature, and one 
should be aware that “‘conflicting results in the litera-
ture’ may be entirely artifactual” (p. 6). In addition, 
“many of the interactions hypothesized to account for 
differences in findings in different studies are nonexis-
tent; that is, they are apparitions composed of the ecto-
plasm of sampling error and other artifacts” (p. 7).

It is our contention that by and large, the literature 
on cognitive training has underestimated the role of 
sampling error and other artifacts, which include issues 
with measurement, range restriction, and typographical 
errors, among others. Specifically, many researchers 
assume that distinct types of interventions will have 
different effects on far transfer—some interventions will 
have a positive effect, and others will not. But this is a 
hypothesis that researchers can test empirically while 
keeping in mind that the variability in results could be 
in reality artifactual. We tested this hypothesis in the 
meta-analyses and second-order meta-analysis that we 
discuss below and found that the hypothesis is incorrect 
empirically: The variability is artifactual. Thus, beyond 
random fluctuations, there are no differences between 
the different types of intervention: Their effect on far-
transfer tasks is null when sampling error, publication 
bias, and type of control group are taken into account. 
We get the same results when meta-analyses are carried 
out within one domain (e.g., action video games vs. 
nonaction video games) or between domains (i.e., the 
second-order meta-analysis comparing the effects of 
WM training, video-game playing, etc.). Thus, rather 
than limiting researchers to piecemeal conclusions (e.g., 
Intervention 1 does not lead to far transfer; Intervention 
2 does not lead to far transfer), we show that it is pos-
sible to reach a conclusion that applies to the broad 
category of cognitive training. Reaching broad general-
izations supported by empirical evidence is the hallmark 
of scientific progress (Braithwaite, 1960; Chow, 1987).

We give this preview of our results because the 
importance of sampling error and other artifacts has 
been systematically overlooked in the cognitive-training 
field. Assuming that different treatments lead to differ-
ent effects was a plausible hypothesis at the beginning 
of the research, but it is not anymore. However, the 
field has, on the whole, clung to this hypothesis, and 
many of the points we discuss next hinge on the failure 
to recognize the role played by sampling error.

Meta-Analytic Evidence

The rationale behind meta-analysis

Disagreements often occur in quantitative empirical 
research, and meta-analysis is considered one of the 
most effective tools for resolving them. Meta-analysis 
offers a set of statistical methods for integrating research 
findings on a particular topic across studies (Borenstein 
et al., 2009; Schmidt & Hunter, 2015). It has three main 
objectives: (a) to estimate the magnitude of an overall 
effect and its confidence intervals, (b) to quantify the 
consistency of the literature (i.e., whether there is vari-
ability in the findings across studies), and (c) to reveal 
the role of potential moderators.

The overall effect size is calculated by averaging the 
effect sizes (e.g., standardized mean differences 
between two groups) obtained from the primary stud-
ies. Each effect size is weighted on precision (i.e., 
inverse of the sampling error variance),3 which is pri-
marily, sometimes solely, a function of sample size. The 
larger the sample, the bigger the weight of the effect 
in the analysis will be.

An essential piece of information offered by meta-
analysis is the degree of between-studies true variance 
(τ2). In brief, the variance observed in any population 
of effect sizes can be decomposed, at the very least, 
into true variance and artifactual variance (e.g., vari-
ance because of sampling error and measurement 
error). Whereas the former warrants an explanation, 
the latter does not. Specifically, τ2 estimates the 
between-studies variance in the population of the effect 
sizes that is not due to sampling error. A low or null τ2 
suggests that no moderating variable affects the mag-
nitude of the effects across the primary studies. If τ2 ≈ 
0, then it can be inferred that there is only one true 
effect in the literature. The accuracy of this overall 
effect is provided by its standard error, which is a func-
tion of the number of observations included in the 
meta-analytic model. By contrast, a high τ2 indicates 
that the magnitude of the effect is moderated by some 
variables (e.g., type of control group). Accounting for 
between-studies true variance, when it exists, is funda-
mental to providing reliable and interpretable meta-
analytic estimates.

Note that unless one has strong a priori predictions 
about the type of moderators that might play a role, it 
is necessary to first test whether there is true heteroge-
neity in the data. If this is not the case, then no mod-
erator analysis should be carried out to not capitalize 
on sampling error (Schmidt & Hunter, 2015). If there is 
true heterogeneity, one should test whether specific 
moderators are statistically significant. Only in this case 
is it appropriate to carry out a detailed moderator analy-
sis. A final caveat is that testing a large number of 
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potential moderators is inappropriate because this capi-
talizes on chance (Type I error).

What do meta-analyses tell researchers 
about cognitive training?

As noted above, we have carried out several meta-
analyses about cognitive training.4 We have repeatedly 
found that the true far-transfer effect size, when esti-
mated from the comparison of treatment versus active 
control group, is close to zero. This outcome has been 
found for WM training (Aksayli et al., 2019; Sala, Aksayli, 
Tatlidil, Gondo, & Gobet, 2019; Sala & Gobet, 2020b), 
video-game playing (Sala et al., 2018), exergames (Sala 
et al., 2021), and music training (Sala & Gobet, 2017c, 
2020a, 2020b). The exception is chess (Sala & Gobet, 
2016), for which too few studies with an active control 
group have been carried out; however, the few avail-
able studies with an active control group suggest a lack 
of far transfer (e.g., Sala & Gobet, 2017a).

These meta-analyses were carried out with different 
methods. Sala, Aksayli, Tatlidil, Tatsumi, et al. (2019) 
redid them with the same method. Table 1 presents a 
summary of these meta-analyses and the results of 
adjustments enabled by second-order meta-analyses 
(see the following section) for the experimental results 
not corrected for publication bias and including both 
active and passive control groups. Table 2 presents the 
corresponding meta-analyses when the studies are 

corrected for publication bias and include only active 
control groups—a better estimate of the true effect of 
cognitive training. As we show, the estimated effect 
sizes of the first-order meta-analyses are small in Table 
1 (range = 0.04–0.19) and essentially zero in Table 2 
(range = −0.03 to 0.02). In both tables, the amount of 
true heterogeneity is very small.

Thus, the meta-analyses allowed us to quantify, with 
respect to far-transfer effects, the extent to which the 
literature is mixed and could explain any between-
studies true variance. An important conclusion was that 
the results are not inconsistent and thus do not depend 
on differences in methodologies between researchers. 
That is, once baseline differences were controlled for, 
the only appreciable source of true variance (which is 
often quite low) is the type of control group. In other 
words, the debate about the literature being mixed and 
the results inconsistent is just much ado about nothing. 
Far-transfer effects do not exist. Cognitive-training 
researchers seem to incorrectly equate sampling-error 
variance and true variance: Terms such as “τ2,” “true 
variance,” or “true heterogeneity” rarely appear in  
cognitive-training reviews. In addition, it seems that 
cognitive-training researchers fail to understand that it 
is absolutely normal that significantly positive effects 
are sometimes found (e.g., when comparing treatment 
groups with active control groups on far-transfer mea-
sures) even if the true effect is zero. Specifically, by 
chance, we expect a portion (5%) of the measurements 

Table 1. First- and Second-Order Meta-Analyses With the Uncorrected (Naive) 
Overall Effect Sizes, Far Transfer Only

Population ki
gi S gi

2 τ2 Adjusted gi

First-order meta-analyses summary  
 WM (TD children) 25 0.13 0.060 0.006 0.12
 WM (LD children) 18 0.12 0.032 0.002 0.12
 WM (adults) 44 0.12 0.041 0.003 0.12
 WM (older adults) 32 0.13 0.085 0.035 0.12
 Action VG (adults) 32 0.08 0.073 0.000 0.12
 Nonaction VG (adults) 16 0.15 0.047 0.012 0.12
 VG (older adults) 10 0.04 0.033 0.000 0.12
 Music (TD children) 36 0.19 0.087 0.042 0.12
 Chess (TD children)  9 0.13 0.049 0.031 0.12
 Exergames (older adults) 11 0.15 0.079 0.021 0.12
Second-order meta-analysis summary results
g= = 0.12 (second-order grand mean)
σ e

2 0 00235.=  (second-order sampling-error variance)
σ gi

2 0 00129= .  (observed between-first-order-meta-analyses variance)
σ2 0=  (true between-first-order-meta-analyses variance)

Note: Data From Sala, Aksayli, Tatlidil, Tatsumi, et al. (2019). ki = number of samples; gi = first-order 
overall effect size; S gi

2  = variance of the observed gs; τ2 = amount of true heterogeneity; adjusted 
gi = adjusted first-order overall effect size; TD = typically developing; LD = learning disabilities; 
VG = video games; WM = working memory.
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to be statistically significant (p < .05, one-tailed). Effect 
sizes in a given literature are mathematically bound to 
differ because of sampling error. Variability across and 
within the studies is the rule, not the exception.

A step further: second-order meta-analysis

Second-order meta-analysis is a procedure designed by 
Schmidt and Oh (2013) for integrating findings of first-
order (i.e., conventional) meta-analyses. This technique 
estimates a grand mean of the first-order overall effect 
sizes and, most notably, the between-meta-analyses true 
variance. Second-order meta-analysis represents the 
current highest level of cumulative knowledge in quan-
titative research.

In Sala, Aksayli, Tatlidil, Tatsumi, et al. (2019), we 
applied second-order meta-analysis to cognitive-training 
data (for results about far transfer, see Tables 1 and 2). 
The analysis included 14 statistically independent first-
order meta-analyses (332 samples, 1,555 effect sizes, 
and 21,968 participants) of near- and far-transfer effects 
in different populations (e.g., children, adults, and older 
adults). As shown in Tables 1 and 2, the training pro-
grams covered were WM training, action- and nonaction- 
video-game training, music training, chess training, and 
exergame training. The key results were as follows. First, 
near transfer occurs even when placebo effects are con-
trolled for and seems to be moderated by the age of the 

participants. Second, far transfer is negligible (uncor-
rected overall effect) or null (when placebo effects and 
publication bias are ruled out). Third, within-studies (ω2) 
and between-studies true variance (τ2) are small to null 
with far transfer. Fourth, second-order sampling error 
(i.e., the residual sampling error from first-order meta-
analyses) explains all the between-meta-analyses vari-
ance with far transfer. That is, we found no evidence of 
either within-studies, between-studies, or between- 
meta-analyses true variance. These results strongly cor-
roborate the idea that although near transfer is real and 
the magnitude of its effect is moderated by the population 
examined, the observed far transfer is due to factors that 
are unspecific (i.e., it occurs regardless of the type of train-
ing regimen or population), such as placebos. (This con-
clusion is buttressed by the results of Kassai et al., 2019, 
who carried out a meta-analysis on training components 
of children’s executive-functions skills, a type of train-
ing not covered by our second-order meta-analysis.)

Other cognitive-training programs

For some cognitive-training programs, there are not 
enough studies to perform a proper meta-analysis. 
Examples include the ACTIVE trial, commercial brain-
training games (e.g., Neuroracer, Lumosity, and BrainHQ), 
and multidomain training programs (Binder et al., 2016; 
Buitenweg et al., 2017; Duyck & Op de Beeck, 2019). 

Table 2. First- and Second-Order Meta-Analyses With the Corrected Overall Effect 
Sizes (Only Active Control Groups), Far Transfer Only

Population ki gi S gi

2 τ2 Adjusted gi

First-order meta-analyses summary  
 WM (TD children) 15 0.01 0.064 0.000 0.00
 WM (LD children) 12 0.02 0.111 0.000 0.00
 WM (adults) 27 0.00 0.213 0.000 0.00
 WM (older adults) 16 0.01 0.009 0.000 0.00
 Action VG (adults) 34 −0.01 0.107 0.011 0.00
 Nonaction VG (adults)  6 0.00 0.033 0.000 0.00
 VG (older adults)  4 −0.03 0.033 0.000 0.00
 Music (TD children) 17 −0.02 0.055 0.012 0.00
 Chess (TD children)  3 0.01 0.032 0.000 0.00
 Exergames (older adults)  8 −0.02 0.072 0.000 0.00
Second-order meta-analysis summary results
g
=  = 0.00 (second-order grand mean)
σ e

2 0 00302.=  (second-order sampling-error variance)
σ gi

2 0 00014.=  (observed between-first-order-meta-analyses variance)
σ 2 0=  (true between-first-order-meta-analyses variance)

Note: Data From Sala, Aksayli, Tatlidil, Tatsumi, et al. (2019). ki = number of samples; gi = first-order 
overall effect size; S gi

2
 = variance of the observed gs; τ2 = amount of true heterogeneity; adjusted gi = 

adjusted first-order overall effect size; TD = typically developing; LD = learning disabilities; VG = 
video games; WM = working memory.
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To date, none of these regimens have shown compel-
ling evidence, or any evidence at all, of training-induced 
far transfer to either cognitive tests or real-life skills (for 
reviews, see Sala & Gobet, 2019; Simons et al., 2016). 
These studies are thus in line with the findings reviewed 
above.

Active versus passive control groups

Recently, Au et al. (2020) questioned the use of active 
control groups as currently used in the cognitive-train-
ing literature. These authors carried out a meta-analysis 
and a meta-meta-analysis on the effects of cognitive 
interventions, focusing on the differences between pas-
sive and active control groups. They took their results 
as showing that there is no meaningful performance 
difference between the two types of control groups. 
This is clearly different from the conclusions obtained 
in our meta-analyses with respect to far transfer. Why 
did they obtain different results? We believe that these 
differences result from several suboptimal (to incorrect) 
decisions made by Au et al.

Most importantly, the meta-meta-analysis was per-
formed in a less than optimal way. Statistically dependent 
meta-analyses—that is, meta-analyses including the same 
primary studies—were put together in the same model.5 
This procedure violates the assumption of independence. 
This often leads to underestimating sampling error vari-
ance and, hence, overestimating true variance, which 
results in errors in calculating effect sizes and confidence 
intervals (Schmidt & Hunter, 2015; Schmidt & Oh, 2013). 
In addition, only meta-analyses published until 2016 were 
included, which has the consequence of ignoring a sub-
stantial amount of evidence. Finally, Au et al. (2020) 
mixed different types of information: (a) different types 
of training, including cognitive-training interventions, 
mnemonics (Floyd & Scogin, 1997; Verhaeghen et al., 
1992), and serious games (Wouters et al., 2013), and (b) 
near-transfer (e.g., Uttal et al., 2013) and far-transfer (e.g., 
Lampit et al., 2014) outcomes (there is little to no placebo 
effect in near transfer in our meta-analyses, too). In con-
clusion, Au et al.’s results do not represent any compel-
ling evidence that the choice of control group (passive 
or active) is irrelevant to the results in the cognitive-
training literature.

Technical issues aside, the most relevant aspect of 
the problem is defining what qualifies as an active 
control group. Simons et al. (2016) highlighted that 
active controls should be designed to isolate the vari-
able of interest (i.e., the effect of the training program) 
as accurately as possible. This means that to rule out 
placebo effects, active control groups should be 
engaged in activities that are cognitively demanding 
and trigger positive expectations on their effectiveness 

in the participants (Boot et al., 2013). Therefore, control 
activities should differ from the cognitive-training pro-
gram regarding only the key element that is hypothe-
sized to enhance the target cognitive skill or skills. For 
example, the far-transfer effects of WM training regi-
mens could be tested by employing adaptive visual-
search tasks (e.g., Guye & von Bastian, 2017; Hering 
et al., 2017). Although cognitively demanding and per-
ceived as effective training, these tasks lack the “WM 
training component.” Using nonadaptive WM training 
tasks is, in our opinion, a slightly less desirable choice.

Meta-analyses and reviews about cognitive training 
often do not apply Simons et al.’s (2016) criterion for 
defining a control activity as active (e.g., Au et al., 2020; 
Teixeira-Santos et  al., 2019). Rather, control groups 
engaged in any alternative activity (e.g., non-cognitively 
demanding filler tasks) are considered as active. This 
less stringent (suboptimal) criterion is another source of 
discrepancy between meta-analyses in the literature.

Finally, note that our meta-analyses do not show that 
placebo effects occur in all cognitive-training programs. 
For example, they are not present in either action- or 
nonaction-video-game training (Sala et al., 2018). How-
ever, we did find that placebos always occur in WM 
training when it comes to far transfer (Sala & Gobet, 
2020b). These placebos are around 0.15 to 0.20 stan-
dardized mean difference at best and often affected by 
publication bias.

Publication bias and laboratory bias

In our second-order meta-analysis, we estimated a small 
publication-bias effect (0.05–0.10 standardized mean 
differences). Publication bias thus seems to be a minor 
issue in the cognitive-training literature. In fact, this 
finding appears to be in line with the current state of 
the art in psychology (Stanley et  al., 2018). Of more 
interest are probably the anomalous effects reported 
by two laboratories involved in cognitive-training stud-
ies, effects that were identified by meta-analyses 
(Bediou et al., 2018; Sala, Aksayli, Tatlidil, Gondo, & 
Gobet, 2019). The effect sizes reported by these labo-
ratories, which are unusually large compared with those 
found by other laboratories, are a nonnegligible source 
of variability in the cognitive-training literature, and an 
important task for further research will be to under-
stand the reason for these discrepancies.

First, the Padua laboratory (Borella and colleagues) 
has carried out more than 10 studies implementing a 
particular WM training regimen in older adults (Catego-
rization Working Memory Span [CWMS] task; for more 
details, see Borella et al., 2017). In nearly all of these 
studies, medium to large effect sizes were found in both 
near- and far-transfer measures. The other studies in 
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the field that used the CWMS task reported small to 
null overall effect sizes (Sala, Aksayli, Tatlidil, Gondo, 
& Gobet, 2019). This marked difference between the 
findings of the Padua laboratory and the ones reported 
by other laboratories is probably due to the peculiar 
type of active control group employed by the former. 
Rather than a cognitively demanding activity, the con-
trol subjects were often asked to fill in biographical 
questionnaires. This type of filler task does not meet 
the standards of an active task. A study that employed 
the CWMS training regimen and compared its effects 
against a cognitively active control task (adaptive 
visual-search training) found small near-transfer effects 
and no far-transfer effect (Hering et al., 2017).

Second, Green and Bavelier’s studies about the ben-
efits of playing action video games reported much 
greater effects than all the other studies in the field 
(Bediou et al., 2018). This anomaly—which is captured 
in the asymmetry of the distribution of the effect sizes—
is, in all probability, due to the fact that some effect sizes 
were suppressed from the primary studies (Bavelier’s 
personal communication reported in Boot et al., 2011) 
or have been incorrectly reported as coming from dif-
ferent samples. These issues have been documented in 
several articles by Simons and Boot (Boot et al., 2011; 
Hilgard et al., 2019) and have led to a series of correc-
tions of Green and Bavelier’s findings (e.g., Green & 
Bavelier, 2019, 2020).

Between-individuals differences  
in far transfer

A common argument against meta-analytic evidence is 
that it does not account for within-studies individual 
differences. In a very general sense, this argument is 
correct. Meta-analysis does not provide any detailed 
information regarding within-studies, between-subjects 
differences. Meta-analysis is designed for estimating the 
magnitude and consistency of overall effects. Nonethe-
less, this does not mean that meta-analytic evidence is 
unreliable. In fact, the combination of null overall far-
transfer effects and null between-studies true variability 
suggests that between-individuals, within-studies dif-
ferences seem to matter very little in cognitive training. 
That being said, we think that it is useful to discuss 
how some authors come to the conclusion that indi-
vidual differences do show up in cognitive-training data 
despite a lack of clear-cut effects.

Jaeggi et al. (2011) presented the argument that there 
are between-individuals differences in far transfer (even 
if the mean difference between trainees and control 
subjects is close to zero) because there is a correlation 
between gains in the trained task and gains in the 

transfer tasks in the experimental group. The idea is 
that the more one improves on the training task (e.g., 
n-back), the more one benefits from the training in 
terms of far transfer (e.g., improvement in the Raven’s 
matrices).

This argument is incorrect statistically. Positive cor-
relations between gains occur every time within- 
sessions (i.e., same time point) covariances are bigger 
than between-sessions covariances. However, there is 
no good reason why this should be considered as evi-
dence in favor of a training effect (for all the details, 
see Tidwell et al., 2014).

Another common incorrect argument relies on the 
negative correlation occurring between far-transfer pre-
test scores and pretest/posttest gains. This correlation 
is sometimes presented as evidence of an individual-
based compensatory effect (e.g., Karbach et al., 2015). 
Put simply, a given cognitive-training regimen is 
believed to be particularly effective for individuals who 
performed poorly at baseline assessment (i.e., Subject × 
Treatment interaction). However, such negative correla-
tions are likely to be, at least in part, statistical artifacts 
due to regression to the mean (Smoleń et  al., 2018). 
Therefore, correlations between pretest/posttest gains 
and pretest scores alone cannot be considered as evi-
dence for true individual differences in training-induced 
transfer effects.

Beyond the above statistically incorrect inferences, 
we note that postulating between-individuals differ-
ences when the overall far-transfer effect is zero leads 
to absurd conclusions, especially if no true between- or 
within-studies variance is observed. In fact, if a sub-
group of participants outperforms the control partici-
pants (true positive effect size), that means that the 
other subgroup is outperformed by the control partici-
pants (true negative effect size) because the mean effect 
is zero. Now, why should cognitive-training programs 
exert a true negative effect (i.e., damage) on cognition? 
It is obvious that if the overall effect is zero, then the 
training has no impact on one’s domain-general cogni-
tive skills regardless of any covariate. On the other 
hand, if researchers assume that the training is effective 
(i.e., true positive effect size) for a subgroup of indi-
viduals and ineffective yet not detrimental (i.e., true 
null effect size) for the other group, then they would 
observe an attenuated but still positive overall effect 
size. This scenario is, however, inconsistent with the 
empirical data (the observed overall effect is zero).

Finally, the above correlation-based arguments seem 
odd. It is well known that correlations do not constitute 
any evidence of causality. Only the inclusion of a control 
group can isolate the variable of interest (i.e., training-
induced far-transfer effects). For example, Smoleń et al. 
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(2018) showed that modeling correlation with structural 
models may, in principle, provide some evidence of a 
true compensatory effect (i.e., beyond regression to the 
mean). However, it is necessary to include a control 
group to demonstrate that such an effect is caused by 
training programs. More prosaically, it is unclear why 
time and resources should be invested to enroll an 
entire control group if correlations were enough to 
establish a causality link between a person’s perfor-
mance in training tasks and cognitive enhancement. We 
must conclude that, in the current state of the art, appeal-
ing to putative individual differences in cognitive train-
ing appears more like an attempt to make far-transfer 
null effects worth some optimism and further research 
rather than a proper scientific hypothesis.

What Is Wrong With the Cognitive-
Training Hypothesis?

As is clear from the empirical evidence reviewed in the 
previous sections, the likelihood that cognitive training 
provides broad cognitive and academic benefits is very 
low indeed; therefore, resources should be devoted to 
other scientific questions—it is not rational to invest 
considerable sums of money on a scientific question 
that has been essentially answered by the negative. In 
a recent article, Green et al. (2019) took the exact 
opposite of this decision—they strongly recommended 
that funding agencies should increase funding for cog-
nitive training. This obviously calls for comments.

The aim of Green et al.’s (2019) article was to provide 
methodological recommendations and a set of best 
practices for research on the effect of behavioral inter-
ventions aimed at cognitive improvement. Among oth-
ers, the addressed issues include the importance of 
distinguishing between different types of studies (fea-
sibility, mechanistic, efficacy, and effectiveness studies), 
the type of control groups used, and expectation effects. 
Many of the points addressed in detail by Green et al. 
reflected sound and well-known research practices 
(e.g., necessity of running studies with sufficient statisti-
cal power, need for defining the terminology used, and 
importance of replications; see also Simons et al., 2016).

However, the authors made disputable decisions con-
cerning central questions. These include whether super-
ordinate terms such as “cognitive training” and “brain 
training” should be defined, whether a discussion of meth-
ods is legitimate while ignoring the empirical evidence 
for or against the existence of a phenomenon, the extent 
to which meta-analyses can compare studies obtained 
with different methodologies and cognitive-enhancement 
methods, and whether multiple measures should be used 
for a latent construct such as intelligence.

Lack of definitions

Although Green et al. (2019) emphasized that “impre-
cise terminology can easily lead to imprecise under-
standing and open the possibility for criticism of the 
field,” they opted to not provide an explicit definition 
of “cognitive training” (p. 4). Nor did they define the 
phrase “behavioral interventions for cognitive enhance-
ment,” used throughout their article. Because they 
specifically excluded activities such as video-game 
playing and music (p. 3), we surmised that they used 
“cognitive training” to refer to computer tasks and 
games that aim to improve or maintain cognitive abili-
ties such as WM. The term “brain training” is some-
times used to describe these activities, although it 
should be mentioned that Green et al. objected to the 
use of the term.

Note that researchers investigating the effects of 
activities implicitly or explicitly excluded by Green  
et al. (2019) have emphasized that the aim of those 
activities is to improve cognitive abilities and/or aca-
demic achievement, for example, chess ( Jerrim et al., 
2017; Sala et  al., 2015), music (Gordon et  al., 2015; 
Schellenberg, 2006), and video-game playing (Bediou 
et al., 2018; Feng et al., 2007). For example, Gordon  
et al.’s (2015) abstract concluded by stating that “results 
are discussed in the context of emerging findings that 
music training may enhance literacy development via 
changes in brain mechanisms that support both music 
and language cognition” (p. 1).

Green et al. (2019) provided a rationale for not pro-
viding a definition. Referring to “brain training,” they 
wrote:

We argue that such a superordinate category label 
is not a useful level of description or analysis. 
Each individual type of behavioral intervention 
for cognitive enhancement (by definition) differs 
from all others in some way, and thus will gener-
ate different patterns of effects on various cogni-
tive outcome measures. (p. 4)

They also noted that even using subcategories such as 
“working-memory training” is questionable. They did 
note that “there is certainly room for debate” (p. 4) 
about whether to focus on each unique type of inter-
vention or to group interventions into categories.

In line with common practice (e.g., De Groot, 1969; 
Elmes et al., 1992; Pedhazur & Schmelkin, 1991), we 
take the view that definitions are important in science. 
Therefore, in this article, we have proposed a definition 
of “cognitive training” (see “Defining Terms” section 
above), which we have used consistently in our 
research.



Perspectives on Psychological Science XX(X) 9

Current state of knowledge and  
meta-analyses

A sound discussion of methodology in a field depends 
on the current state of knowledge in this field. Whereas 
Green et al. (2019) used information gleaned from pre-
vious and current cognitive-training research to recom-
mend best practices (e.g., use of previous studies to 
estimate the sample size needed for well-powered 
experiments), they also explicitly stated that they will 
not discuss previous controversies. We believe that this 
is a mistake because, as just noted, the choice of meth-
ods is conditional on the current state of knowledge. 
In our case, a crucial ingredient of this state is whether 
cognitive-training interventions are successful—specifi-
cally, whether they lead to far transfer. One of the main 
“controversies” precisely concerns this question, and 
thus it is unwise to ignore it.

Green et al. (2019) were critical of meta-analyses and 
argued that studies cannot be compared:

For example, on the basic research side, the 
absence of clear methodological standards has 
made it difficult-to-impossible to easily and directly 
compare results across studies (either via side-by-
side contrasts or in broader meta-analyses). This 
limits the field’s ability to determine what tech-
niques or approaches have shown positive out-
comes, as well as to delineate the exact nature of 
any positive effects – e.g., training effects, transfer 
effects, retention of learning, etc. (p. 3)

These comments wholly underestimate what can be 
concluded from meta-analyses. Like many other 
researchers in the field, Green et al. (2019) assumed 
that (a) the literature is mixed and, consequently, (b) 
the inconsistent results depend on differences in meth-
odologies between researchers. However, assuming 
that there is some between-studies inconsistency and 
speculating on where this inconsistency stems from is 
not scientifically apposite (see “The Importance of Sam-
pling Error and Other Artifacts” section above). Rather, 
quantifying the between-studies true variance (τ2) 
should be the first step to take.

Using latent factors

In the section “Future Issues to Consider With Regard 
to Assessments,” Green et al. (2019, pp. 16–17) raised 
several issues with using multiple measures for a given 
construct such as WM. This practice has been recom-
mended by authors such as Engle et al. (1999) to reduce 
measurement error. Several of Green et al.’s arguments 
merit discussion.

A first argument is that using latent factors—as in 
confirmatory factor analysis—might hinder the analysis 
of more specific effects. This argument is incorrect 
because the relevant information is still available to 
researchers (see Kline, 2016; Loehlin, 2004; Tabachnik 
& Fidell, 1996). By inspecting factor loadings, one can 
examine whether the preassessment/postassessment 
changes (if any) affect the latent factor or only specific 
tests (this is a longitudinal-measurement-invariance 
problem). Green et al. (2019) seemed to equate multi-
indicator composites (e.g., summing z scores) with 
latent factors. Composite measures are the result of 
averaging or summing across a number of observed 
variables and cannot tell much about any task-specific 
effect. A latent factor is a mathematical construct 
derived from a covariance matrix within a structural 
model that includes a set of parameters that links the 
latent factor to the observed variables. That being said, 
using multi-indicator composites would be an improve-
ment compared with the current standards in the field.

A second argument is that large batteries of tests 
induce motivational and/or cognitive fatigue in partici-
pants, especially with particular populations. Although 
this may be true, for example with older participants, 
large batteries have been used in several cognitive-
training studies, and participants were able to undergo 
a large variety of testing (e.g., Guye & von Bastian, 
2017). Nevertheless, instead of assessing many different 
constructs, it may be preferable to focus on one or two 
constructs at a time (e.g., fluid intelligence and WM). 
Such a practice would help reduce the number of tasks 
and the amount of fatigue.

Another argument concerns carryover and learning 
effects. The standard solution is to randomize the pre-
sentation order of the tasks. This procedure, which 
ensures that bias gets close to zero as the number of 
participants increases, is generally efficient if there is 
no reason to expect an interaction between treatment 
and order (Elmes et al., 1992). If this is the case, another 
approach can be used: counterbalancing the order of 
the tasks. However, complete counterbalancing is dif-
ficult with large numbers of tasks, and in this case, one 
often has to be content with incomplete counterbalanc-
ing using a Latin square (for a detailed discussion, see 
Winer, 1962).

A final point made by Green et al. (2019) is that using 
large batteries of tasks increases the rate of Type I 
errors. Although this point is correct, it is not an argu-
ment against multi-indicator latent factors. Rather, it is 
an argument in favor because those do not suffer from 
this bias. In addition, latent factors aside, there are 
many methods designed for correcting α (i.e., the sig-
nificance threshold) for multiple comparisons (e.g., 
Bonferroni, Holm, false-discovery rate). Increased Type 
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I error rates are a concern with researchers who ignore 
the problem and do not apply any correction.

One reasonable argument is that latent factor analy-
sis requires large numbers of participants. The solution 
is offered by multilab trials. The ACTIVE trial—the larg-
est experiment carried out in the field of cognitive 
training—was, indeed, a multisite study (Rebok et al., 
2014). Another multisite cognitive-training experiment 
is currently ongoing (Mathan, 2018).

To conclude this section, we emphasize two points. 
First, it is well known that in general, single tests pos-
sess low reliability. Second, multiple measures are 
needed to understand whether improvements occur at 
the level of the test (e.g., n-back) or at the level of the 
construct (e.g., WM).

Some methodological recommendations

We are not as naive as to believe that our analysis will 
deter researchers in the field to carry out much more 
research on the putative far-transfer benefits of cogni-
tive training despite the lack of any empirical evidence. 
We thus provide some advice about the directions that 
should be taken so that not all resources are spent in 
search of a chimera.

Making methods and results accessible, piecemeal 
publication, and objective report of results. We 
broadly agree with the methodological recommendations 
made by Green et al. (2019), such as reporting not only p 
values but also effect sizes and confidence intervals, and 
the need for well-powered studies. We add a few impor-
tant recommendations (for a summary of the recommen-
dations throughout this article, see Table 3). To begin 
with, it is imperative to put the data, analysis code, and 
other relevant information online. In addition to providing 
supplementary backup, this allows other researchers to 
closely replicate the studies and to carry out additional 
analyses (including meta-analyses)—important require-
ments in scientific research. By the same token and in  
the spirit of Open Science, researchers should reply to 
requests from meta-analysts asking for summary data 
and/or the original data. In our experience, response rate 
is currently 20% to 30% at best (e.g., Sala et  al., 2018). 
Although we understand that it may be difficult to answer 
such replies positively when data were collected 20 years 
or more ago, there is no excuse for data collected more 
recently.

Just like other questionable research practices, piece-
meal publication should be avoided (Hilgard et  al., 
2019). If dividing the results of a study into several arti-
cles cannot be avoided, the articles should clearly and 
unambiguously indicate the fact that this has been done 
and should reference the articles sharing the results.

There is one point made by Green et al. (2019) with 
which we wholeheartedly agree: the necessity of report-
ing results correctly and objectively without hyperbole 
and incorrect generalization. The field of cognitive 
training is littered with exaggerations and overinterpre-
tations of results (see Simons et  al., 2016). A fairly 
common practice is to focus on the odd statistically 
significant result even though most of the tests turn out 
nonsignificant. This is obviously capitalizing on chance 
and should be avoided at all costs.

In a similar vein, there is a tendency to overinterpret 
results of studies using neuroscience methods. A strik-
ing example was recently offered by Schellenberg 
(2019), who showed that in a sample of 114 journal 
articles published in the last 20 years on the effects of 
music training, causal inferences were often made 
although the data were only correlational; neuroscien-
tists committed this logical fallacy more often than psy-
chologists. There was also a rigid focus on learning and 
the environment and a concurrent neglect of alternative 
explanations, such as innate differences. Another exam-
ple consists in inferring far transfer when neuroimaging 
effects are found but not behavioral effects. However, 
such an inference is illegitimate.

The need for detailed analyses and computational 
models. As a way forward, Green et al. (2019) recom-
mended well-powered studies with large numbers of par-
ticipants. In a similar vein, and focusing on the n-back-task 
training, Pergher et al. (2020) proposed large-scale stud-
ies isolating promising features. We believe that such an 
atheoretical approach is unlikely to succeed. There is an 
indefinite space of possible interventions (e.g., varying 
the type of training task, the cover story used in a game, 
the perceptual features of the material, the pace of pre-
sentation, ad infinitum), which means that searching this 
space blindly and nearly randomly would require a pro-
hibitive amount of time. Strong theoretical constraints are 
needed to narrow down the search space.

There is thus an urgent need to understand which 
cognitive mechanisms might lead to cognitive transfer. 
As we showed above in the section on meta-analysis, 
the available evidence shows that the real effect size 
of cognitive training on far transfer is zero. Prima facie, 
this outcome indicates that theories based on general 
mechanisms, such as brain plasticity (Karbach & 
Schubert, 2013), primitive elements (Taatgen, 2013), 
and learning to learn (Bavelier et al., 2012), are incor-
rect when it comes to far transfer. We reach this conclu-
sion by a simple application of modus tollens: (a) 
Theories based on general mechanisms such as brain 
plasticity, primitive elements, and learning to learn pre-
dict far transfer. (b) The empirical evidence shows that 
there is no far transfer. Therefore, (c) theories based 
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on general mechanisms such as brain plasticity, primi-
tive elements, and learning to learn are incorrect.

Thus, if one believes that cognitive training leads to 
cognitive enhancement—most likely limited to near 
transfer—one has to come up with other theoretical 
mechanisms than those currently available in the field. 
We recommend two approaches to identify such mech-
anisms, which we believe should be implemented 
before large-scale randomized controlled trials are car-
ried out.

Fine analyses of the processes in play. The first approach 
is to use experimental methods enabling the identifica-
tion of cognitive mechanisms. Cognitive psychology has a 
long history of refining such methods, and we limit our-
selves to just a few pointers. A useful source of informa-
tion consists in collecting fine-grained data, such as eye 
movements, responses times, and even mouse location 
and mouse clicks. Together with hypotheses about the 
processes carried out by participants, these data make it 
possible to rule out some mechanisms while making others 
more plausible. Another method is to design experiments 
that specifically test some theoretical mechanisms. Note 
that this goes beyond establishing that a cognitive inter-
vention leads to some benefits compared with a control 
group. In addition, the aim is to understand the specific 
mechanisms that lead to this superiority.

It is highly likely that the strategies used by the par-
ticipants play a role in the training, pretests, and post-
tests used in cognitive-training research (Sala & Gobet, 
2019; Shipstead et al., 2012; von Bastian & Oberauer, 

2014). It is essential to understand these strategies and 
the extent to which they differ between participants. 
Are they linked to a specific task or a family of tasks 
(near transfer), or are they general across many differ-
ent tasks (far transfer)? If it turns out that such general 
strategies exist, can they be taught? What do they tell 
researchers about brain plasticity and changing basic 
cognitive abilities such as general intelligence?

Two studies that investigated the effects of strategies 
are mentioned here. Laine et al. (2018) found that 
instructing participants to employ a visualization strat-
egy when performing n-back training improved perfor-
mance. In a replication and extension of this study, 
Forsberg et al. (2020) found that the taught visualization 
strategy improved some of the performance measures 
in novel n-back tasks. However, older adults benefited 
less, and there was no improvement in WM tasks struc-
turally different from n-back tasks. In the uninstructed 
participants, n-back performance correlated with the 
type of spontaneous strategies and their level of detail. 
The types of strategies also differed as a function of age.

A final useful approach is to carry out a detailed task 
analysis (e.g., Militello & Hutton, 1998) of the activities 
involved in a specific regimen of cognitive training and 
in the pretests and posttests used. What are the overlap-
ping components? What are the critical components and 
those that are not likely to matter in understanding 
cognitive training? These components can be related to 
information about eye movements, response times, and 
strategies and can be used to inspire new experiments. 
The study carried out by Baniqued et al. (2013) provides 

Table 3. Key Recommendations for Researchers

General recommendations
 Provide precise definitions of key terms (e.g., cognitive training, active control group, near and far transfer).
 Avoid piecemeal publication; when this is unavoidable, provide references to the articles sharing the results.
 Avoid hyperbole and incorrect generalization.
  Use well-specified theories (e.g., computational models) to derive predictions about the potential  

 effectiveness of cognitive training.
  Use detailed measures (e.g., eye movements, mouse clicks) to understand the detail of the cognitive  

 mechanisms mediating potential cognitive transfer.
 Understand the strategies used by the participants.
 Test interventions in silico before testing them in vivo.
 Carry out a task analysis of the tasks used in pretest and posttest as well as in training.
 Focus on near transfer because far transfer is elusive.
Recommendations about statistics and data curation
 Put the data, analysis code, and other relevant information online.
 Report results correctly and objectively; do not capitalize on chance with suspect statistical practices.
 Reply to requests from meta-analysts asking for summary data and/or the original data.
 When estimating latent factors, use multiple measures for each factor.
 Randomize the presentation order of the tasks.
 Use meta-analytic evidence for assessing the plausibility of cognitive-training interventions.
 Pay attention to true heterogeneity in the data for making informed conclusions.
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a nice example of this approach. Using task analysis, 
they categorized 20 web-based casual video games into 
four groups (WM, reasoning, attention, and perceptual 
speed). They found that performance in the WM and 
reasoning games was strongly associated with memory 
and fluid-intelligence abilities, measured by a battery of 
cognitive tasks.

Cognitive modeling as a method. The second approach 
we propose consists of developing computational models 
of the postulated mechanisms, which of course should 
be consistent with what is known generally about human 
cognition (for a similar argument, see Smid et al., 2020). 
To enable an understanding of the underlying mecha-
nisms and be useful in developing cognitive-training reg-
imens, the models should be in a position to simulate 
not only the tasks used as pretests and posttests but also 
the training tasks. This is what Taatgen’s (2013) model is 
doing: It first simulates improvement in a complex verbal 
WM task over 20 training sessions and then simulates how 
WM training reduces interference in a Stroop task com-
pared with a control group. (We would, of course, query 
whether this far-transfer effect is genuine.) By contrast, 
Green, Pouget, & Bavelier’s (2010) neural-network and 
diffusion-to-bound models simulate the transfer tasks (a 
visual-motion-direction discrimination task and an audi-
tory-tone-location discrimination task) but do not simulate 
the training task with action video-game playing. Ideally, 
a model of the effect of an action video game should 
simulate actual training (e.g., by playing Call of Duty 2), 
processing the actual stimuli involved in the game. To 
our knowledge, no such model exists. Note that given 
the current developments in technology, modeling such a 
training task is not unrealistic.

The models should also be able to explain data at a 
micro level, including eye movements and verbal pro-
tocols (to capture strategies). There is also a need for 
the models to use exactly the same stimuli as those 
used in the human experiments. For example, the 
chunk hierarchy and retrieval structures model of chess 
expertise (De Groot et al., 1996; Gobet & Simon, 2000) 
receives as learning input the kind of board positions 
that players are likely to meet in their practice. When 
simulating experiments, the same stimuli are used as 
those employed with human players, and close com-
parison is made between predicted and actual behavior 
along a number of dimensions, including percentage 
of correct responses, number and type of errors, and 
eye movements. In the field of cognitive training, Taatgen’s 
(2013) model is a good example of the proper level of 
granularity for understanding far transfer. Note that, 
ideally, the models should be able to predict possible 
confounds and how modifications to the design of train-
ing would circumvent them. Indeed, we recommend 

that considerable resources be invested in this direction 
of research with the aim of testing interventions in silico 
before testing them in vivo (Gobet, 2005). Only those 
interventions that lead to benefits in simulations should 
be tested in trials with human participants. In addition 
to embodying sound principles of theory development 
and testing, such an approach would also lead to con-
siderable savings of research money in the medium and 
long terms.

Searching for small effects

Green et al. (2019, p. 20) recognized the possibility that 
large effects are unlikely and that one should be con-
tent with small effects. They are also open to the pos-
sibility of using unspecific effects, such as expectation 
effects. It is known that many educational interventions 
bring a modest effect (Hattie, 2009), and thus, the ques-
tion arises as to whether cognitive-training interven-
tions are more beneficial than alternative ones. We 
argue that many other interventions are cheaper and/
or have specific benefits when they directly match edu-
cational goals. For example, games related to mathe-
matics are more likely to improve one’s mathematical 
knowledge and skills than n-back tasks and can be 
cheaper and more fun.

If cognitive training leads only to small and unspe-
cific effects, one faces two implications, one practical 
and one theoretical. Practically, the search for effective 
training features has to operate blindly, which is very 
inefficient. This is because current leading theories in 
the field are incorrect, as noted above, and thus there 
is no theoretical guidance. Thus, effectiveness studies 
are unlikely to yield positive results. Theoretically, if 
the effectiveness of training depends on small details 
of training and pre/post measures, then the prospects 
of generalization beyond specific tasks are slim to null. 
This is unsatisfactory scientifically because science pro-
gresses by uncovering general laws and finding order 
in apparent chaos (e.g., the state of chemistry before 
and after Mendeleev’s discovery of the periodic table 
of elements).

A straightforward explanation can be proposed for 
the pattern of results found in our meta-analyses with 
respect to far transfer—small to zero effect sizes, low 
or null true between-studies variance. Positive effect 
sizes are just what can be expected by chance, features 
of design (i.e., active vs. passive control groups), regres-
sion to the mean, and sometimes publication bias. (If 
you believe that explanations based on chance are not 
plausible, consider Galton’s board: It perfectly illus-
trates how a large number of small effects can lead to 
a normal distribution. Likewise, in cognitive training, 
multiple variables and mechanisms lead to some 
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experiments having a positive effect, others a negative 
effect, with most experiments centered around the 
mean of the distribution.) Thus, the search for robust 
and replicable effects is unlikely to be successful.

Note that the issue with cognitive training is not the 
lack of replications and the lack of reproducibility, 
which plague large swathes of psychology: The main 
results have been replicated often and form a highly 
coherent pattern when results are put together in (meta-)
meta-analyses. Pace Pergher et al. (2020), we do not 
believe that variability of methods is an issue. On the 
contrary, the main outcomes are robust to experimental 
variations. Indeed, results obtained with many different 
training and evaluation methods converge (small-to-zero 
effect sizes and low true heterogeneity) and thus satisfy 
a fundamental principle in scientific research: the prin-
ciple of triangulation (Mathison, 1988).

Funding agencies

Although Green et al.’s (2019) article is explicitly about 
methodology, it does make recommendations for fund-
ing agencies and lobbies for more funding: “We feel 
strongly that an increase in funding to accommodate 
best practice studies is of the utmost importance” (p. 17). 
On the one hand, this move is consistent with the aims 
of their article in that several of the suggested practices, 
such as using large samples and performing studies that 
would last for several years, would require substantial 
amounts of money to be carried out. On the other hand, 
lobbying for an increase in funding is made without 
any reference to results showing that cognitive training 
might not provide the hoped-for benefits. The authors 
only briefly discussed the inconsistent evidence for 
cognitive training, concluding that “our goal here is not 
to adjudicate between these various positions or to 
rehash prior debates” (p. 3). However, in general, ratio-
nal decisions about funding require an objective evalu-
ation of the state of the research. Obviously, if the 
research is about developing methods for cognitive 
enhancement, funders must take into consideration  
the extent to which the empirical evidence supports 
the hypothesis that the proposed methods provide 
domain-general cognitive benefits. As we showed in 
the “Meta-Analytical Evidence” section, there is little to 
null support for this hypothesis. Thus, our advice for 
funders is to base their decisions on the available 
empirical evidence and on the conclusions reached by 
meta-analyses.

The Broader View

As discussed earlier, our meta-analyses clearly show 
that cognitive training does not lead to any far transfer 

in any of the cognitive-training domains that have been 
studied. In addition, using second-order meta-analysis 
made it possible to show that the between-meta- 
analyses true variance is due to second-order sampling 
error and thus that the lack of far transfer generalizes 
to different populations and different tasks. Taking a 
broader view suggests that our conclusions are not 
surprising and are consistent with previous research. 
In fact, they were predictable. Over the years, it has 
been difficult to document far transfer in experiments 
(Singley & Anderson, 1989; Thorndike & Woodworth, 
1901), industrial psychology (Baldwin & Ford, 1988), 
education (Gurtner et al., 1990), and research on anal-
ogy (Gick & Holyoak, 1983), intelligence (Detterman, 
1993), and expertise (Bilalić et al., 2009). Indeed, theo-
ries of expertise emphasize that learning is domain-
specific (Ericsson & Charness, 1994; Gobet & Simon, 
1996; Simon & Chase, 1973). When putting this sub-
stantial set of empirical evidence together, we believe 
that it is possible to conclude that the lack of training-
induced far transfer is an invariant of human cognition 
(Sala & Gobet, 2019).

Obviously, this conclusion conflicts with the opti-
mism displayed in the field of cognitive training, as 
exemplified by Green et al.’s (2019) article discussed 
above. However, it is in line with skepticism recently 
expressed about cognitive training (Moreau, 2021; 
Moreau et al., 2019; Simons et al., 2016). It also raises 
the following critical epistemological question: Given 
that the overall evidence in the field of cognitive train-
ing strongly suggests that the postulated far-transfer 
effects do not exist, and thus the probability of finding 
such effects in future research is very low, should one 
conclude that the reasonable course of action is to stop 
performing cognitive-training research on far transfer?

We believe that the answer to this question is “yes.” 
Given the clear-cut empirical evidence, the discussion 
about methodological concerns is irrelevant, and the issue 
becomes searching for other cognitive-enhancement 
methods. However, although the hope of finding far-
transfer effects is tenuous, the available evidence clearly 
supports the presence of near-transfer effects. In many 
cases, near-transfer effects are useful (e.g., with respect 
to older adults’ memory), and developing effective meth-
ods for improving near transfer is a valuable—and impor-
tantly, realistic—avenue for further research.
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Notes

1. Because our definition focuses on cognitive tasks, it does 
not include mostly physical activities, such as sport. In addi-
tion, note that the term “cognitive training” is also used in a 
different line of research in which the interest is in testing the 
limits of cognitive plasticity in ageing, for example by training 
younger and older participants to use mnemonics (e.g., Kliegl 
et al., 1989).
2. For a broader conceptualization of transfer, see Barnett and 
Ceci (2002) and Klahr and Chen (2011).
3. When a random-effect meta-analysis is performed, the effect 
sizes are weighted on the inverse of the sum of their sampling 
error and the between-studies true variance (τ2).
4. The article listed in this section contain extensive discussions 
of the meta-analyses carried out by other authors.
5. Au and colleagues (2020) violated the assumption of statisti-
cal independence by grouping meta-analyses with overlapping 
samples into a number of clusters. Although the clusters’ overall 
effect sizes were statistically independent to each other, these 
effect sizes and their sampling error variances were incorrectly 
calculated as a result of the aforementioned violation.
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