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Marginal Structural Models to Estimate Causal Effects of Right-to-Carry Laws on Crime
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ABSTRACT
Right-to-carry (RTC) laws allow the legal carrying of concealed firearms for defense, in certain states in the
United States. I used modern causal inference methodology from epidemiology to examine the effect of RTC
laws on crime over a period from 1959 up to 2016. I fitted marginal structural models (MSMs), using inverse
probability weighting (IPW) to correct for criminological, economic, political and demographic confounders.
Results indicate that RTC laws significantly increase violent crime by 7.5% and property crime by 6.1%. RTC
laws significantly increase murder and manslaughter, robbery, aggravated assault, burglary, larceny theft
and motor vehicle theft rates. Applying this method to this topic for the first time addresses methodological
shortcomings in previous studies such as conditioning away the effect, overfit and the inappropriate use of
county level measurements. Data and analysis code for this article are available online.
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1. Introduction

Lott and Mustard (1997) concluded that the introduction of
right-to-carry (RTC) laws in states in the United States decreases
violent crime. These laws allow the legal carrying of concealed
firearms for self-defense. Since then, many studies (see Sec-
tion 5) have been conducted on this issue, with conflicting
results. For example, Donohue, Aneja, and Weber (2019) con-
cluded that RTC laws substantially increase violent crime. As
described in Lott and Mustard (1997), Lott (2010), and Dono-
hue, Aneja, and Weber (2019) RTC laws could simultaneously
both have a positive effect (e.g., by deterrence) and a negative
effect (e.g., by escalation or displacement) on crime.

The National Research Council (U.S.) (2004) concluded that
to reach a robust scientifically supported conclusion, new ana-
lytical approaches are needed. For example, as described in
Section 5, many methods typically used in previous studies can
suffer from adjusting away the effect, overfitting and inappro-
priate use of county level measurements, among others. In this
article, I attempt to address these deficiencies using marginal
structural models (MSMs), a causal inference technique popular
in epidemiology (Hernán, Brumback, and Robins 2000; Robins,
Hernán, and Brumback 2000; Hernán and Robins 2006a).

2. Background: Marginal Structural Models (MSMs)

MSMs are used in epidemiology to estimate the causal effect of a
treatment on a chosen outcome in medical patients, from obser-
vational data (Robins, Hernán, and Brumback 2000; Hernán,
Brumback, and Robins 2000; Hernán and Robins 2006a). I
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introduce the theory of MSMs and illustrate their advantages
over standard models below.

MSMs are based on the concept of counterfactuals, also called
potential outcomes (Robins 1999; Höfler 2005). Counterfactuals
are the outcomes that could have been observed, had a certain
exposure been applied to an observational unit. For instance,
the outcome after exposure to a medical treatment of patients,
or the outcome after the introduction of RTC laws in states in
the United States. Causal effects can then be defined as contrasts
between these potential outcomes (Hernán 2004; Hernán and
Robins 2006a).

For example, consider patients receiving either a medical
treatment or a placebo in a clinical trial. The outcome Y could be
survival (yes or no). With dichotomous exposure A, the poten-
tial outcome for individual i when receiving treatment level
0, the placebo is Yi,a=0. The potential outcome for individual
i when receiving treatment level 1, the medical treatment is
Yi,a=1. The causal effect of the medical treatment on survival,
as compared to the placebo, for individual i could then be
expressed as the difference between Yi,a=0 and Yi,a=1.

At the population level, the causal effect of a dichotomous
exposure A on an outcome Y can be defined as a contrast
between distributions of potential outcomes. The distribution
of outcomes when every observational unit would have received
exposure level 0 is f (ya=0). The distribution of outcomes when
every unit would have received exposure level 1 is f (ya=1).
The causal effect comparing these two distributions could be
expressed for instance as a difference or ratio of the survival
rates. Such a contrast is referred to as a marginal causal effect.
This is precisely the effect that is desired when estimating the
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causal effect of a specific action, treatment or policy, such as
when estimating the effect of RTC laws on crime (Hernán 2004).

2.1. Marginal Structural Models (MSMs)

Using the counterfactual framework, the marginal causal
effect of an exposure on a chosen outcome can be described
quantitatively using a MSM (Hernán, Brumback, and Robins
2000; Robins, Hernán, and Brumback 2000; Hernán and Robins
2006a). For example, the MSM

E(Ya) = β0 + β1a (1)

could describe the causal effect of a dichotomous exposure
A on a continuous outcome Y . The response variable Ya is
the potential outcome that would have been observed, when
every unit of observation would have received the same specific
treatment level a. Parameter β1 then quantifies the causal effect
of A on Y . This parameter is equal to the difference in the
mean of Y between the distributions of the potential outcomes
corresponding to the two treatment levels of A, f (ya=0) and
f (ya=1). The parameters of such a MSM could be estimated by
fitting the standard regression model

E(Y) = β0 + β1A (2)

on observations{Yi, Ai} from a randomized experiment with no
selection bias. However, in observational studies bias due to
confounding is often present, as described in the next paragraph.

2.2. Confounding

Confounding occurs when one or more covariates have a causal
effect both on the exposure allocation and on the outcome
(Pearl 2009). Such covariates are referred to as “confounders.”
An example of a confounder in a medical setting is disease
progression in HIV positive individuals, when estimating the
effect of treatment on mortality. Disease progression could
both affect the start of treatment as well as mortality (Hernán,
Brumback, and Robins 2000). Or, in the present study, for
example the composition of the state legislature could possibly
affect both the introduction of RTC laws as well as crime rates,
either directly or indirectly. Unadjusted effect estimators such
as Equation (2) are biased estimators of the causal effect when
confounding is present (Greenland and Morgenstern 2001).
Adjusting for confounding is possible using various methods.
I will describe both traditional “conditional” regression models
in which confounders are included as covariates, and inverse
probability weighting (IPW) to correct for confounding while
fitting a MSM.

2.3. Conditional Models and their Drawbacks

The most commonly used statistical method to adjust for
confounding is conditioning, as was indeed done in previous
studies on the effect of RTC laws on crime (Section 5).
Conditioning amounts to the pooling of associations, estimated
within strata defined by confounders. In this manner, an overall
adjusted effect estimate is obtained. Such a pooled estimate can
be obtained by using stratification methods, or by including

confounders as covariates in regression models (Fitzmaurice
2004; Ranstam 2008).

A drawback of conditioning is that effects can be adjusted
away, especially in a longitudinal setting. I will illustrate this
in the context of estimating the effect of RTC laws on crime. I
indicate time in years since a chosen baseline using j. Consider
the time-varying exposure Aj, the implementation of a RTC
law at the state level (0 = no, 1 = yes). Also, consider violent
crime rate Yj at the state level, and the composition of the state
legislature Lj. The effect of Aj on Yj could be confounded by
time-varying covariate Lj. I illustrate this temporal structure
at time points j and j − 1 in Figure 1 using a directed acyclic
graph (DAG) (Hernán, Hernández-Díaz, and Robins 2004;
Hernán and Robins 2006b). DAGs illustrate the assumed
causal structure between variables, with nodes representing
variables, and causal effects depicted by unidirectional edges
(arrows).

Suppose that state legislature composition Lj is a confounder
for the effect of Aj on Yj, assuming it has a causal effect on both
Aj and Yj, as indicated by �. Assuming that the implementation
of a RTC law at a given time point also has an effect on the
composition of the state legislature at a subsequent time point
(the effect of Aj−1 on Lj), Aj−1 has an indirect effect on Yj
through Lj, as indicated by ��. When “adjusting” for the state
legislature composition in the previous year by including it as a
covariate in a regression model, the indirect effect of RTC laws
on crime is adjusted away (Robins 1997; Robins, Greenland, and
Hu 1999).

The problem of adjusting away the effect will occur when
conditioning on any variable that is also intermediate for the
effect of the exposure. This can occur when estimating the effect
of RTC laws on crime, when including possible longitudinal
confounders in the regression model, as was done in previous
studies on this topic. The association will still be a biased esti-
mate of the true causal effect.

Other drawbacks of conditional regression models include
non-collapsibility and collider stratification, which can both
introduce more bias. Non-collapsibility entails that effect
estimates from conditional models are only true estimates of
marginal effects with a model that uses a linear or log-linear
link function (Greenland, Robins, and Pearl 1999). Collider
stratification is the introduction of bias by conditioning on a
common effect of two variables. This can also occur in the
longitudinal situation illustrated in Figure 1. For a more detailed
explanation I refer to the literature (Greenland 2003; Whitcomb
et al. 2009).

In this article, I use inverse probability weighting (IPW) to
address some of the limitations of conditional modeling, as
explained below.

2.4. Introduction to Inverse Probability Weighting (IPW)

The parameters of MSMs can be estimated using IPW to cor-
rect for confounding (Robins 1998). Fitting a MSM using IPW
amounts to weighting each observation by the inverse of the
probability of the observed exposure level, given the observed
value of the confounders. Subsequently, a MSM regressing the
outcome on the exposure is fitted on the weighted dataset. I
illustrate this in a point treatment study (i.e., at one specific
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Figure 1. Illustration of the temporal structure between a (possible) confounder such as state legislature composition L, RTC law implementation A and the crime rate Y
at two subsequent time points j − 1 and j. Confounding is indicated by �. By conditioning on L, the indirect effect of A on Y through L, as indicated by ��, is adjusted away.

time point) below, and generalize to a longitudinal setting in
Section 3.4.

Consider a point treatment setting with a dichotomous expo-
sure A, outcome Y and a vector of possible confounders K
measured at a single time point. Using IPW, we can adjust for
confounders K by weighting each observation i by the inverse
probability weight

wi = 1
P(Ai = ai|K i = ki)

. (3)

I indicate the observed exposure and confounder status with
a and k, respectively. The denominator of Equation (3) con-
tains the probability of the observed exposure level given the
observed values of confounders K . The denominator can be
estimated from a model regressing P(A = 1) on K , either using
the predicted probability or one minus the predicted probability,
for ai = 1 and ai = 0, respectively. Weighting by wi creates
a pseudo-population in which K no longer predicts A, but in
which the causal effect of A on Y is still present (Robins 1998).
Weighting observations i by wi one can then fit a model such as
Equation (2) to estimate the parameters of MSM Equation (1).

To increase statistical efficiency and attain better coverage
of confidence intervals, it is recommended to use stabilized
weights (Hernán, Brumback, and Robins 2000; Cole and Hernán
2008), for example,

swi = P(Ai = ai)

P(Ai = ai|K i = ki)
. (4)

The numerator of Equation (4) contains the probability of the
observed exposure level, which can be estimated using the
observed proportions. To further stabilize the weights, one can
condition both in the numerator and in the denominator of
Equation (4) on a set of covariates V that are not confounders.

2.5. Assumptions

The following assumptions are made when fitting a MSM using
IPW (Cole and Hernán 2008). The assumption of consistency
states that the counterfactual outcome corresponding to the
observed exposure level is precisely the observed outcome
(Robins, Greenland, and Hu 1999; Cole and Hernán 2008).
This means that the exposure, the causal effect of which is to
be estimated, needs to be clearly defined. It is also necessary to
assume positivity, which means that every level of the exposure
of interest has a positive probability of being allocated in
every stratum defined by the measured confounders (Cole and

Hernán 2008; Petersen et al. 2012). This assumption is also
known as the assumption of experimental treatment assignment
(ETA). The assumption of conditional exchangeability means
that within strata defined by the measured confounders,
potential outcomes are independent of the observed exposure
level (Hernán and Robins 2006a). In practice, this holds when
there are no unmeasured confounders.

3. Methods

I have estimated the causal effect of the adoption of RTC laws in
states in the United States on crime rates with a MSM for each
crime type, correcting for confounding using IPW. I combined
this method with multiple imputation to deal with missing
values. Below I describe the details of this method. I have imple-
mented the described method in the R software (R Core Team
2021), version 4.0.5. I have made the data and statistical code
available with this article, for full transparency and falsifiability,
and to allow researcher to improve upon this analysis as they see
fit (see supplementary materials).

3.1. Data

Observational units i are all 50 states in the United States, with
measurements taken in calendar years Tj = 1959, 1960, . . . ,
2016, with j = 0, 1, . . . , 57 corresponding to those 58 calendar
years, respectively. I have chosen to start the follow up at 1959
since that is when the first RTC law was implemented, in New
Hampshire (Donohue, Aneja, and Weber 2019). I included the
following variables in the dataset:

Total reported numbers of crimes Yc
ij in each state i, at the end

of each year j, with c = 1, 2, . . . , 9 representing violent crime
total, murder/manslaughter, forcible rape, robbery, aggravated
assault, property crime total, burglary, larceny theft and motor
vehicle theft, respectively. These variables as well as total state
population Pij were obtained from Federal Bureau of Investiga-
tion (2019c) for 1960 up to 2014 for most states and for 1965 up
to 2014 for the state of New York. Yc

ij and Pij data for all states
in 2015 and 2016 were obtained from Federal Bureau of Inves-
tigation (2019a) and Federal Bureau of Investigation (2019b),
respectively. Corresponding crime rates can be computed from
Yc

ij and Pij. Measurements for these variables were missing for
the state of New York in 1959 up to 1964 and in 1959 for the
other states.

I have also used RTC law implementation Aij with 0 =
restrictive (no-issue or may-issue) and 1 = permissive (shall-
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issue or unrestricted) according to Donohue, Aneja, and Weber
(2019). Aij = 1 for the years in which a RTC law was in effect
for the majority of that year, and Aij = 0 otherwise.

I have collected possible longitudinal confounders for the
effect of RTC laws on crime in vector Lij including the following.
I used the state violent crime rate and property crime rate per
100.000 people, as computed above, at the end of year j−2. Since
this variable is measured at the end of year, I have used a lag
of two years to satisfy proper temporal ordering, as illustrated
in Figure 1. This necessitated state level measurements of this
variable from 1957 up to 2014. Measurements for these variables
were missing for the state of New York in 1957 up to 1964 and
in 1957, 1958, and 1959 for the other states.

I also included the state share of the total U.S. Gross Domestic
Product (GDP), at the end of year j−2 to satisfy proper temporal
ordering. This necessitated state level measurements for this
variable from 1957 up to 2014. I obtained measurements from
1963 up to 2014 for every state from Bureau of Economic Anal-
ysis (2019), therefore, the variable had missing values for 1957
up to 1962. To improve normality, I used a natural logarithm
transformation.

As possible confounders I also used various demographic
variables including the proportions of the population that is
female, white non-hispanic, and of age between 0–18, 19–39,
and 40–64 (with 65 and above redundant), respectively. Since
these variable are measured at the end of year, I employed a
lag of two years necessitating measurements from 1957 up to
2014. I computed these proportions from population counts
by sex, race and age obtained from different tables including
US Census Bureau (2017a, 2017b, 2019a, 2019b, 2019c, 2019).
These population counts also included measurements for 1950
which I used to add further support to the multiple imputation
model described in Section 3.2. Values for 1957, 1958, 1959, and
1961 up to 1969 were missing.

I used Population density computed from the population
counts Pij and the state land areas in square miles obtained
from US Census Bureau (2016). These were transformed using a
natural logarithm to improve normality, and lagged by two years
for similar reasons as the demographic variables.

As possible confounders I also included an indicator variable
indicating that the state legislation has a Republican majority,
measured at the beginning of the previous year, to satisfy tem-
poral ordering according to Figure 1. I used data from Klarner
(2013) and National Conference of State Legislatures (NCSL)
(2019), before and from 1978 onwards, respectively. And I also
used an indicator variable indicating that the state governor
is a Republican, measured at the beginning of the previous
year, to satisfy temporal ordering according to Figure 1. I used
data from Klarner (2013) and National Conference of State
Legislatures (NCSL) (2019), before and from 2009 onwards,
respectively. The interaction between the indicator variables
for the state legislation and state governor party was also
included.

I assumed that the above included criminological, economic,
political and demographic possible confounders all are likely to
affect both the implementation of a RTC law and crime rates,
just like variable L in Figure 1 with j representing follow-up time
in years. The temporal ordering in Figure 1 is always satisfied
since I used a lag of one year for confounders measured at the

beginning of the year and a lag of two years for confounders
measured at the end of the year.

I have used natural splines (De Boor 2001) with three degrees
of freedom fitted on calendar time and follow-up time in the
imputation model (Section 3.2), the main MSM models (Sec-
tion 3.3) and the models for the implementation of a RTC law
(Section 3.4). A natural spline with three degrees of freedom has
two boundary knots and one interior knot, so that within two
distinct periods different cubic trends can be fitted. I consider
this choice sufficiently flexible to model calendar year in the
context of crime rates and RTC law implementation, based on
the observed trend of an increase of crime rates from 1960
up to the “crack era” of the 1980s and 1990s, followed by a
decrease. I illustrate this trend in the longitudinal plots in the
supplementary materials. I assumed that the relatively limited
amount of data does not allow for a more complex model,
although I explore varying degrees of freedom in the sensitivity
analysis (Section 3.5).

I assessed the positivity assumption (see Section 2.5) graph-
ically, using scatterplots of the implementation of a RTC law
(yes/no) against each possible confounder, for each of the multi-
ple imputation datasets that were generated as described below
(see supplementary materials).

3.2. Multiple Imputation

To deal with the missing values in the data as described above I
performed multiple imputation for multivariate, multilevel data
using Markov chain Monte Carlo (MCMC) according to Schafer
and Yucel (2002). I used a multivariate linear mixed-effects
model to impute the missing values. As dependent variables I
used the natural logarithm of the crime numbers, natural loga-
rithm of state population numbers, natural logarithm of the state
share of the total U.S. Gross Domestic Product (GDP), the pro-
portions of the population that is female, white non-hispanic,
and of age between 0–18, 19–39, and 40–64, respectively. As
independent predictors in this model I used the intercept, the
indicator for RTC law implementation, a natural spline (De Boor
2001) with three degrees of freedom fitted on calendar year, and
a random intercept for each state.

Using 200 MCMC iterations after 5.000 burn-in iterations, I
generated 25 imputed datasets from this model. The number of
iterations and datasets was chosen based on technical feasibility
in the sensitivity analysis as described below. On each of these 25
imputed datasets MSMs for the effect of RTC laws on crime rates
were fitted using IPW as described below. Estimates and stan-
dard errors were combined according to Rubin’s rules (Rubin
1987). After this, I performed a sensitivity analysis as described
in Section 3.5.

3.3. Marginal Structural Models

To model the causal effect of the implementation of RTC
laws on crime, for each of the crime types c I have estimated
the parameters of a separate generalized linear mixed model
(GLMM) (Wolfinger and O’connell 1993), with a quasi-Poisson
link function:

log

(
E(Yc

aij)

Pij

)
= θ c

0 + θ c
1aij + θ c

2f 1(Tj) + ξ c
i . (5)
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These models convert the numbers of crimes for each type per
state and year Yc

ij to crime rates using the offset Pij. The models
include the effect θ c

1 of the dummy variable for the RTC laws per
state, per year, aij. The function f 1(Tj) indicates a natural spline
(De Boor 2001) with three degrees of freedom, as a flexible
modeling of calendar time. ξ c

i indicates a normally distributed
random intercept at the state level. This approach is somewhat
similar to the generalized estimating equation (GEE) model
described by eq (1b) in Hernán, Brumback, and Robins (2002),
with the addition of the random intercept.

Compared to a standard Poisson link function, the quasi-
Poisson link function uses an additional scale parameter
allowing for under- or overdispersion of the error distribution
(Zeileis, Kleiber, and Jackman 2008). I have also incorporated
an autoregressive correlation structure of order one (AR1)
(Littell, Pendergast, and Natarajan 2000) between the repeated
outcomes of each state. I consider this structure an appropriate
choice for repeated measures over time, since the correlation
between measurements declines when those measurements
are spaced further apart in time (Littell, Pendergast, and
Natarajan 2000). While using IPW to correct for confounding as
described below, I performed two-sided significance testing at a
significance level of 5%, compared to 0 under the null hypothesis
for the main effects θ c

1.
The causal effects estimated by θ c

1 can be interpreted in the
following manner. The MSMs Equation (5) model for each
crime rate the contrast between two distributions of potential
outcomes: (a) the repeated measurements of the crime rates in
each state, when all states would never have implemented a RTC
law during follow-up, and (b) the repeated measurements of the
crime rates in each state, when all states would have always had
a RTC law implemented, during the complete follow-up. This
effect is quantified by the parameters θ c

1, from which the risk
ratios eθ c

1 can be computed. When such a risk ratio would for
example, be equal to 1.1, that should be interpreted as the imple-
mentation of a RTC law increasing the corresponding crime rate
by 10%, while a risk ratio of 0.9 would equal a decrease by 10%.

3.4. Inverse Probability Weighting

I have fitted model Equation (5) on the observed data, for each of
the crime types, correcting for confounding by the longitudinal
variables in Lij, using IPW. I have weighted each observation ij
by the stabilized weights swij, similarly to Hernán, Brumback,
and Robins (2002):

swij =
j∏

k=0

P(Aik = aik|Aik−1 = aik−1)

P(Aik = aik|Aik−1 = aik−1, Lik = lik)
. (6)

This weight is for each measurement j for each state i the
product over all previous time points of a ratio of probabili-
ties. The factors in the numerator contain the probability of
the observed exposure status at each time point, aij, given the
observed exposure history up to the previous time point aij−1 =
ai0, ai1, . . . , aij−1. The factors in the denominator contain the
probability of the observed exposure status at each time point,
aij, given the observed exposure history up to the previous time
and the observed history of the longitudinal confounders lij =
li0, li1, . . . , lij.

I have estimated the factors in Equation (6) as follows. The
introduction of a RTC law was never reversed in any state. I
assumed that after the first instance of having a RTC law within
follow up in a specific state, the elements P(Aik = aik| . . .) are
equal to one. In other words, after the first instance of having a
RTC law within follow up, the probability of having a RTC law in
that state is always one. Using only the data up to and including
the first year in which a RTC law was implemented within follow
up, I have estimated the other elements in the denominator of
Equation (6) using the regression model

log(− log(1 − P(Aij = 1))) = β0 + β1f 2(j) + β2Lij. (7)

Model Equation (7) is similar to a Cox proportional hazards
model, but with the outcome observed in discrete time, using the
complementary log-log link function (Prentice and Gloeckler
1978). I have included main effects of the longitudinal con-
founders L, including the interaction between state legislature
composition and governor party. The function f 2(j) indicates a
natural spline with three degrees of freedom fitted on follow up
time, as a flexible baseline hazard function. The elements in the
numerator of Equation (6) were estimated using a similar model
including only f 2(j) and the intercept.

As a robustness check, I computed Pearson correlation coef-
ficients between the measured predictors that were included in
the models fitted to estimate the weights. I regarded excessively
high correlations (i.e., > 0.8) as an indication of possibly prob-
lematic multicollinearity in these models. When computing
these correlations, I used only the data up to and including the
first year in which a RTC law was implemented within follow
up, to which these models were fitted, before imputation.

Note that exposure allocation model Equation (7) uses 16
parameters including the intercept. Given the 42 observed
“events” corresponding to the first instance of having a RTC law
implemented within follow up (see Section 4), I consider this
the maximum acceptable complexity of the model, based on the
simulation studies performed by Vittinghoff and McCulloch
(2007).

3.5. Sensitivity Analysis

I have performed a sensitivity analysis to examine the robustness
of the results. I have fitted the following variations of the main
MSMs.

Variants 1–11 each subtract a specific component of the
model Equation (7): in variant (1) violent crime is dropped
from the model, in (2) property crime is dropped, in (3) GDP
share, (4) proportion female, (5) proportion white non-hispanic,
(6) the age variables, (7) population density, (8) the interaction
between the indicator that the state legislature has a Republican
majority and the indicator that the state governor is Republican,
(9) state legislature, (10) state governor and in (11) both the state
legislature and governor indicators are dropped.

In variant (12) I have added to the exposure allocation model
specified by Equation (7) both the two-way interactions and the
three way interactions between the spline fitted on follow-up
time, the indicator that the state legislature has a Republican
majority and the indicator that the state governor is Republican.
In this manner, possible paradigm shifts within the Democratic
and Republican party are captured. These paradigm shifts could
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modify the effect of these political variables on the probability
that a RTC law is implemented.

As explained in Cole and Hernán (2008), the statistical effi-
ciency of an IPW estimator can be increased by truncating
the weights, at the cost of introducing a small amount of bias.
When truncating, weights below or above a chosen percentile
are set to that percentile, at the lower and upper end of the
distribution of the weights, respectively. That is, a one-sided
truncation proportion of 0.01 would indicate truncating at the
1st and 99th percentile. In the sensitivity analysis I have included
the following variants: (13) weights truncated at the 1st and 99th
percentile, (14) weights truncated at the 2nd and 98th percentile
and (15) weights truncated at the 5th and 95th percentile.

Both in the exposure allocation model Equation (7) and the
MSMs Equation (5) natural splines with three degrees of free-
dom are used on follow-up time and calendar time, respectively.
I examined the sensitivity of the main effect estimates to the
number of degrees of freedom. I fitted the following variants:
variant (16) with a spline with two degrees of freedom in the
exposure allocation model, variant (17) including a spline with
four degrees of freedom in the exposure allocation model, vari-
ant 18) using a spline with two degrees of freedom in the MSMs
and variant (19) using a spline with four degrees of freedom in
the MSMs.

According to Donohue, Aneja, and Weber (2019), while a
RTC law was implemented in 1989 in Pennsylvania, this only
came into effect in the capital Philadelphia in 1996. Therefore,
I examined the effect of changing the implementation year for
Pennsylvania from 1989 to 1996 in the sensitivity analysis in
variant 20).

In variant (21) I fitted GEE models for the causal effect of
RTC law implementation on crime, as an alternative to the
GLMM Equation (5). And similarly to Equation (5) these
models also used a Poisson link function with an additional
scale parameter and an AR1 correlation structure between the
repeated outcomes. In addition, these models used fixed effects
for each state and each year, resulting in relatively complex
models.

In the next three variants I examined changes to the impu-
tation model, while using the main MSMs. In variants (22) I
dropped the indicator for RTC law implementation from the
imputation model. In variants (23) I decreased the number of
degrees of freedom for the natural spline fitted on calendar time
to two. In variants (24) I increased this number of degrees of
freedom to four.

In addition to the above described variants of the main
MSMs, I have fitted two additional models, to compare the
results with. In variant (25) I fitted standard regression models
similar to Equation (5), but unweighted, and including the same
covariates as Equation (7) to adjust for confounding by condi-
tioning. In this manner, any effect of the implementation of a
RTC law on crime that is indirect through any of the included
covariates will be adjusted away, as described in Section 2.3.
In variant (26) I fitted standard regression models similar to
Equation (5), but unweighted, and without any other way of
correcting for confounding. Therefore, these models are unad-
justed.

Variants (27) were designed as MSMs similar to the main
MSMs, but using a selection of states and years that is similar to

the synthetic control approach of Donohue, Aneja, and Weber
(2019). As described by Donohue, Aneja, and Weber (2019), the
synthetic control approach estimated the effect of implemen-
tation of a RTC law for the 33 states that implemented a RTC
law during 1981–2007, while using follow-up data from 1977 to
2014. Synthetic controls where constructed for each of the 33
“treatment” states using states with either (a) no RTC legislation
as of the year 2014, or (b) states that passed RTC laws at least
10 years after the implementation in the specific treatment state
(Donohue, Aneja, and Weber 2019). To emulate this selection
I included any state where no RTC was implemented, or where
a RTC law was implemented in 1981 or later. This resulted in
using 44 states in total. I also used follow-up data from 1977 to
2014. Note that this selection precludes any left-truncation in
the exposure allocation model Equation (7), since no switches
can occur before the start of follow-up by definition.

4. Results

4.1. Descriptive Statistics

The dataset contains 2900 years of total follow up. There were 42
states that had a RTC law implemented. This led to 1889 years of
follow up without and 1011 years with a RTC law implemented,
respectively. Table 1 presents basic descriptive statistics for the
state crime rates, including the % of missing measurements that
were imputed. Note that based on the minimum, there are no
zero crime rates for any of these crime types at the state level.
This precludes the occurrence of zero-inflation. The occurrence
of zero-inflation would be problematic when using Poisson
regression (He et al. 2014). Table 2 presents basic descriptive
statistics for the possible confounders for the effect of RTC laws
on crime, that were corrected for, using IPW as described in
Section 3.4. This table also includes the % of missing measure-
ments that were imputed, which is at maximum 20.7%. Absolute
Pearson correlations between predictors averaged 0.24, with an
interquartile range of 0.11 up to 0.32 and a maximum of 0.69.
This does not indicate any relevant amount of multi-collinearity.

4.2. Main Results

Main results are presented in Table 3. At the chosen 5% signifi-
cance level, RTC laws have a statistically significant effect on all
crime rates except forcible rape. This includes 7.5% more violent
crime total, 5.7% more murder/manslaughter, 10.9% more rob-

Table 1. Descriptive statistics of state crime rates (recorded crimes per 100,000
population) measured in each state and year (1959–2016).

Crime rate
(/100,000 population) Mean SD Minimum Maximum % Missing

Violent crime total 372.8 226.0 9.5 1244.3 1.9%
Murder/manslaughter 6.0 3.6 0.2 20.3 1.9%
Forcible rape 28.2 15.1 0.8 102.2 1.9%
Robbery 110.8 90.9 1.9 684.0 1.9%
Aggravated assault 227.0 144.6 3.6 785.7 1.9%

Property crime total 3556.3 1365.0 573.1 7996.0 1.9%
Burglary 890.3 430.7 182.6 2906.7 1.9%
Larceny theft 2330.4 877.6 293.3 5106.1 1.9%
Motor vehicle theft 335.6 200.3 28.4 1571.1 1.9%

NOTE: Missing values were imputed as described in Section 3.2.
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Table 2. Descriptive statistics of covariates: possible confounders for the effect of
RTC laws on crime.

Variable Mean SD Minimum Maximum % Missing

Violent crime rate 372.9 228.5 9.5 1244.3 5.3%
Property crime rate 3596.1 1368.8 573.1 7996.0 5.3%
State share of total

GDP (nat. log) −4.5 1.0 −6.2 −2.0 10.3%
Proportion female 0.51 0.01 0.43 0.53 20.7%
Proportion white

non-hispanic 0.80 0.15 0.23 1.00 20.7%
Proportion 0–18 0.29 0.04 0.21 0.45 20.7%
Proportion 19–39 0.31 0.03 0.23 0.44 20.7%
Proportion 40–64 0.28 0.04 0.19 0.38 20.7%
Population density

(nat. log) 4.25 1.46 −0.93 7.10 5.3%
State legislation

Republican1 0.29 0.45 0.00 1.00 0.0%
State governor party

Republican1 0.45 0.50 0.00 1.00 0.0%

NOTE: Missing values were imputed as described in Section 3.2.
1Dichotomous variable, therefore, the mean indicates a proportion.

Table 3. Main results: estimated effects of right-to-carry (RTC) laws on state crime
rates in the USA 1959–2016, change in crime rate (%) with 95% confidence interval
and p-value.

Outcome Effect (95% CI) Sig.

Violent crime total 7.5% (3.8%, 11.4%) 0.000
Murder/manslaughter 5.7% (0.5%, 11.1%) 0.032
Forcible rape 0.8% (−2.0%, 3.7%) 0.572
Robbery 10.9% (5.5%, 16.5%) 0.000
Aggravated assault 6.5% (2.5%, 10.7%) 0.001

Property crime total 6.1% (3.5%, 8.8%) 0.000
Burglary 7.5% (3.7%, 11.5%) 0.000
Larceny theft 5.7% (3.1%, 8.2%) 0.000
Motor vehicle theft 6.2% (2.8%, 9.7%) 0.000

bery, 6.5% more aggravated assault, 6.1% more property crime
total, 7.5% more burglary, 5.7% more larceny theft and 6.2%
more motor vehicle theft.

4.3. Exposure Allocation Model, IPW Weights and
Positivity

Table 4 contains effect estimates from exposure allocation model
Equation (7), for numeric predictors (relative to a shift of one
standard deviation) and binary predictors (relative to a one unit
shift), respectively. These effects are summarized across the 25
multiple imputation datasets using the minimum, mean and
maximum. The effect estimates presented in Table 4 are not to
be interpreted as causal effects estimates, since they are obtained
from a conditional model which was fitted with prediction as
a goal. However, what can be concluded is that most of the
included variables seem to have an effect on the implementation
of a RTC law of a relevant magnitude. In addition, some of
the estimated effects seem (post hoc) to have a direction that
is quite logical. For example, when both the state legislature
majority and governor are Republican, it seems almost three
times more likely that a RTC law will be implemented. But it
must be stressed that when one is interested in the causal effects
of these variables, corresponding MSMs should be fitted.

I have included positivity plots for each multiple imputation
dataset in the supplementary materials. Across the observed
range of most predictors, there are both measurements with and

Table 4. Estimated effects of numeric and binary predictors on the implementation
of a right-to-carry (RTC) law, summarized across the 25 multiple imputation (MI)
datasets.

Variable Summary over
and type MI datasets

Relative risk:
effect of 1 SD

Numeric variable Min. Mean Max.

Violent crime rate 1.24 1.31 1.41
Property crime rate 0.64 0.69 0.75
State share of total GDP (nat. log) 0.88 0.94 1.02
Proportion female 0.87 1.24 1.62
Proportion white non-hispanic 0.98 1.14 1.24
Proportion 0–18 0.39 0.73 1.16
Proportion 19–39 0.70 0.99 1.45
Proportion 40–64 0.53 1.07 2.25
Population density (nat. log) 0.34 0.44 0.56

Relative risk:
effect of 1 unit

Binary variable Min. Mean Max.
State legislation Republican 1.11 1.21 1.34
State governor party Republican 0.67 0.68 0.71
State legislation Republican ×
state governor Republican 2.57 2.85 3.12

without the implementation of a RTC law. This lends support
to the validity of the positivity assumption. In some ranges,
often with sparser data, either no measurements with or no
measurements without the implementation of a RTC law are
observed. However, these ranges are relatively small, and close
to the ranges with both outcomes observed. Since these are
continuous variables, a small amount of extrapolation will be
performed when computing the weights. The positivity assump-
tion seems to be appropriate, especially in light of the results
from the sensitivity analysis (Section 4.4) in which variables are
dropped from the analysis.

Descriptive statistics and boxplots for the IPW weights are
also presented in the supplementary materials. From these I
conclude that the mean is always close to one, and that the
variability of the weights is comparable to that of Hernán, Brum-
back, and Robins (2002).

4.4. Sensitivity Analysis Results

Table 5 contains the results of the sensitivity analysis. The vari-
ants 1 through 24 all produce results that are very similar to
the main results. These models all support the conclusion that
the implementation of a RTC law at the state level increases
both violent crime and property crime rates. The effect estimates
for total violent crime and total property crime were always
statistically significant, at least at the 0.05 level or lower. The
effect estimates for total violent crime and total property crime
were always in the order of magnitude of an increase of 5%–
10% and 3%–7%, respectively. The effect estimates for the other
crime rates were also always similar to the main results, for
variants 1 through 24.

The sensitivity analysis indicates that the results are not
sensitive to dropping any variable or interaction term from
the model. By adding the two-way and three-way interactions
with time and the political variables, results similar to the main
MSMs are obtained. By progressively truncating the weights,
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Table 5. Sensitivity analysis: estimated effects1 of right-to-carry (RTC) laws on state crime rates in the USA 1959–2016, change in crime rate (%) for different model
variations.

Model (see Section 3.5) Violentcrim
e

M
urder/m

anslaughter

Forcible
rape

Robbery

Aggravated
assault

Property
crim

e

Burglary

Larceny
theft

M
otorvehicle

theft

Main MSM results 7.5% 5.7% 0.8% 10.9% 6.5% 6.1% 7.5% 5.7% 6.2%
1) Drop violent crime 9.9% 7.5% 1.6% 13.0% 9.2% 7.0% 9.0% 6.4% 7.1%
2) Drop property crime 5.5% 4.8% −0.7% 8.7% 4.5% 3.8% 4.8% 3.4% 4.1%
3) Drop GDP share 7.5% 5.5% 0.7% 10.8% 6.6% 6.1% 7.5% 5.6% 6.2%
4) Drop female 7.0% 6.1% 0.9% 9.9% 6.2% 5.8% 7.1% 5.4% 5.7%
5) Drop white non-hispanic 7.7% 5.1% 1.0% 11.1% 6.7% 6.4% 7.9% 5.9% 6.4%
6) Drop age 8.4% 5.5% 1.0% 12.0% 7.4% 6.8% 8.7% 6.1% 6.7%
7) Drop population density 8.3% 6.9% 2.6% 10.1% 8.1% 6.8% 8.6% 6.4% 5.5%
8) Drop int. legislature×governor 5.4% 5.6% 0.4% 8.8% 4.1% 5.1% 6.2% 4.7% 5.8%
9) Drop state legislature 5.8% 6.6% 1.8% 8.2% 4.8% 5.6% 6.5% 5.1% 6.7%
10) Drop state governor 5.4% 5.6% 0.3% 8.7% 4.0% 5.1% 6.1% 4.6% 5.8%
11) Drop legislature and governor 5.8% 6.6% 1.8% 8.1% 4.7% 5.5% 6.5% 5.0% 6.7%
12) +interactions with time 9.0% 6.7% 0.6% 12.5% 8.2% 7.0% 8.7% 6.5% 7.3%
13) Weights truncated, 1st/99th% 6.9% 4.9% 2.2% 8.6% 6.5% 6.5% 8.0% 6.2% 5.5%
14) Weights truncated, 2nd/98th% 6.7% 4.8% 2.4% 8.2% 6.3% 6.5% 7.9% 6.2% 5.2%
15) Weights truncated, 5th/95th% 5.7% 4.3% 2.6% 7.0% 5.4% 5.9% 7.1% 5.8% 4.0%
16) df=2 spline in weights model 5.7% 4.2% −1.1% 9.3% 4.6% 4.9% 6.0% 4.4% 5.5%
17) df=4 spline in weights model 6.9% 4.7% 0.5% 9.8% 6.0% 6.0% 7.2% 5.6% 6.2%
18) df=2 spline in MSM 6.9% 4.7% 0.5% 9.5% 6.1% 5.5% 6.0% 5.2% 6.3%
19) df=4 spline in MSM 7.2% 5.3% 0.6% 10.6% 6.2% 6.1% 7.4% 5.6% 6.4%
20) RTC implemented 1996 in PA 8.1% 4.5% 0.7% 10.9% 7.5% 6.4% 8.2% 5.8% 5.9%
21) GEE fixed effects state and year 6.0% −1.9% 2.9% 11.1% 3.8% 5.0% 5.9% 4.5% 7.6%
22) Drop RTC from imputation model 7.8% 6.2% 0.9% 10.9% 7.0% 6.3% 7.8% 5.9% 5.9%
23) df=2 spline in imputation model 7.8% 6.0% 0.9% 10.9% 6.9% 6.1% 7.6% 5.7% 5.9%
24) df=4 spline in imputation model 7.9% 6.1% 1.0% 11.3% 7.0% 6.4% 7.9% 5.9% 6.2%
25) Conditional model 1.5% 0.1% 1.4% 2.5% 1.0% 3.6% 3.5% 3.8% 3.0%
26) Unadjusted model 1.2% −0.2% 1.3% 2.1% 0.7% 3.3% 3.3% 3.4% 2.6%
27) MSM, 1977–2014, 44 states2 2.8% 5.6% −1.3% 7.8% 0.9% 2.7% 2.5% 2.8% 2.1%

1Underlined estimates are significant at the 0.05 level or lower.
2Similarly to Donohue, Aneja, and Weber (2019).

the results are more and more skewed in the negative direction,
indicating less adjustment for confounding. Changing the num-
ber of degrees of freedom in the models, or adjusting the RTC
implementation year for Pennsylvania from 1989 to 1996 does
not change the results in a relevant amount. The alternative GEE
models (variants 21) and variants 22 through 24 that examine
changes to the imputation model also produce results quite
similar to the main MSM results.

The conditional models (variants 25) always produce esti-
mates that are much smaller than the main results, and are far
less often statistically significant. This confirms the expectation
that using the conditional models, while adjusting for con-
founding, the effect of RTC laws on crime are at least partially
adjusted away by conditioning on one or more variables that
are intermediate for the effect of RTC laws. Estimates from the
unadjusted models (variants 26) are even smaller, indicating that
it is likely that confounding skews the estimates in the negative
direction.

The estimated effects from the MSMs that were fitted
on the period 1977–2014, similarly to Donohue, Aneja, and
Weber (2019) (variants 27), were in the same direction as the
main results except forcible rape (−1.3%). The effects were
somewhat smaller in magnitude. The effects from variants
(27) attained statistical significance for total violent crime,
murder/manslaughter, robbery, total property crime and larceny

theft. I make a further comparison with the results of Donohue,
Aneja, and Weber (2019) in Section 5.4.

None of the model variants in the sensitivity analysis support
the conclusion that RTC laws significantly decrease any of the
crime rates.

5. Discussion and Conclusion

5.1. Discussion

The results from this study are very robust to variations in model
specification, as investigated in Section 4.4. The assumptions
made by fitting a MSM using IPW (see Section 2.5) are valid.

I have demonstrated the validity of the positivity assump-
tion in Section 4.3. Regarding the assumption of conditional
exchangeability, I have minimized unmeasured confounding
by including a wide range of measured covariates, including
crime rates, an economic indicator, demographic and political
variables. The addition of new covariates could be tested in
follow-up studies, for example, by other researchers that will
have access to the data from this study as made available through
the supplementary material.

Regarding the assumption of consistency, the specified expo-
sure of the implementation of a RTC law at the state level is well-
defined. However, it is of interest to estimate the effect of RTC
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laws conditional on possible longitudinal effect modifiers such
as changes in incarceration rates or law enforcements budgets.
To do so is not possible using a MSM, since it would lead
to adjusting away the effect. When sufficient data is available,
such an analysis could be done as a follow-up study using a
so called history-adjusted marginal structural model (Petersen
et al. 2007).

When drawing causal conclusions from a standard condi-
tional model, the above described assumptions are also implic-
itly made. In addition, in the specific longitudinal situation
described in this study, it would be necessary to assume that
there are no longitudinal covariates included that are also inter-
mediate to the effect of the exposure, as described in Section 2.3.

5.2. Comparison to Lott and Mustard (1997) and Lott
(2010)

While being groundbreaking in performing the first in-depth
statistical analysis on the effect of RTC laws on crime, both
the study by Lott and Mustard (1997) and the update Lott
(2010) have some methodological drawbacks. A concern is that
they use 36 highly collinear demographic variables, resulting
in unstable effect estimates, as noted by Donohue, Aneja, and
Weber (2019).

When examining Lott and Mustard (1997) and Lott (2010)
using the causal modeling framework of MSMs, I conclude that
by using standard regression models, effects can be adjusted
away, inducing biased estimates. Also, unlike the present study,
crime rates at a previous time point were not used as predictors
for the implementation of RTC laws. Other methodological
issues include that Lott and Mustard (1997) and Lott (2010) did
not properly adjust for zero inflation which certainly occurs at
the county level, which is apparent when studying county-level
crime data (see e.g., United States Department of Justice/Federal
Bureau of Investigation 2014). The period examined was limited
in both studies. They did not correct for clustering at the state
level, whereas the present study uses random effects of state to
do so.

5.3. Comparison to Other Studies

Other previous studies have investigated the effect of RTC
laws on crime including Aneja, Donohue, and Zhang (2011),
Ayres and Donohue (2002), Bartley and Cohen (1998), Benson
and Mast (2001), Black and Nagin (1998), Donohue (2003),
Donohue and Ayres (1999), Donohue and Levitt (2001),
Duwe, Kovandzic, and Moody (2002), Helland and Tabarrok
(2004), Hepburn et al. (2004), Kovandzic and Marvell (2003),
Kovandzic, Marvell, and Vieraitis (2005), Ludwig (1998),
Moody and Marvell (2008), Olson and Maltz (2001), Plassmann
and Tideman (2001), Plassmann and Whitley (2003), Rosengart
(2005), and Rubin and Dezhbakhsh (2003).

These studies typically use standard conditional models, so
that effects can be adjusted away. Previous studies also have
never allowed for the possibility that crime rates at a previous
time point could be a confounder for the effect of RTC laws on
crime at a subsequent time point.

Many previous studies use a linear regression model with
a normal error distribution, which is less appropriate for

crime rates than Poisson models (Plassmann and Tideman
2001). Still, when using a Poisson link function, other stud-
ies do not take into account the possibility of under- or
overdispersion.

A common problem in these studies is that the assumption
of independence of measurements is made, when there is in
reality a clustering of measurements taken within the same
geographical unit (e.g., state or county). When dependence of
measurements within clusters is assumed, a common failure is
to not assume an appropriate correlation structure between the
longitudinal measurements.

Many studies have corrected for covariates measured at the
county level. Since RTC laws are implemented at the state level,
not the county level, confounding occurs only at the state level,
and it is sufficient to adjust only for state level variables. The use
of county level measurements introduces unnecessary complex-
ity and instability, in addition to having to deal with possible
zero-inflation.

Many of these studies also suffer from overfit. Given the
amount of available data, overly complex models were fit, yield-
ing unstable results. Since there are only 50 states, and mea-
surements within states are highly correlated, with crime rates
which are very low proportions, I regard the available dataset as
relatively small. Therefore, I was conservative in the amount of
nuisance parameters that I used.

I could not find a previous study in which none of the above-
mentioned problems was present. In most of the cited studies
several of these problems persist. As mentioned in the introduc-
tion, the National Research Council (U.S.) (2004) indeed con-
cluded that to reach a robust scientifically supported conclusion,
new analytical approaches should be developed. The present
study is a response to that call for action, as was also done earlier
by Donohue, Aneja, and Weber (2019), as described in the next
paragraph.

5.4. Comparison to Donohue, Aneja, and Weber (2019)

The method of constructing state level synthetic controls in
Donohue, Aneja, and Weber (2019) is somewhat similar to the
G-computation algorithm described in Van der Wal et al. (2009)
to fit a MSM, estimating a causal effect with panel data. The
present study and Donohue, Aneja, and Weber (2019) both esti-
mate a causal effect while adequately correcting for longitudinal
confounders, but using different methods

The specific causal effects that were estimated are different in
both studies. The present study estimated a risk ratio between
crime rates when all 50 states would never have implemented a
RTC law versus when all states would have always implemented
a RTC law, during the complete follow-up. Donohue, Aneja, and
Weber (2019) compared crime rates between having a RTC law
versus not having a RTC law, after the moment that a RTC law
was actually implemented, in the 33 states that did implement a
RTC law.

The choice of possible confounders that are adjusted for
is also not the same for Donohue, Aneja, and Weber (2019)
and the present study. Both studies use a broad selection of
possible criminological, economic, political and demographic
confounders which would suggest that confounding adjustment
is adequate in both studies. Given the limited amount of data, it
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is necessary to use parsimonious models. Both approaches are
comparable in complexity.

Donohue, Aneja, and Weber (2019) used follow-up from
1977 to 2014, while the present study has a much longer follow-
up, which is likely to yield more statistical power. Another
difference is that Donohue, Aneja, and Weber (2019) did not
incorporate an AR1 autoregressive correlation structure, while
the present study does.

Using the synthetic control approach, Donohue, Aneja, and
Weber (2019) mainly found a significant effect of RTC law
implementation on violent crime rates. This effect was estimated
conditional on year after implementation of the RTC law, and
ranged from −0.117% after 1 year up to 14.344% after 10 years,
averaging 8.45%. The pseudo p-values of Donohue, Aneja, and
Weber (2019), taking full account of the uncertainty in the
estimate, indicate that the effect is significant at the 0.05 level
only after 8 years. When fitting a MSM on a similar (but not
equal) selection of data in the sensitivity analysis (variant 27 in
Section 4.4), I have found a statistically significant effect of RTC
laws on violent crime of 2.8. And while Donohue, Aneja, and
Weber (2019) found no convincing effect of RTC laws on mur-
der and property crimes, in variant 27 I have found significant
increases of 5.6% for murder/manslaughter, 7.8% for robbery,
2.7% for total property crime and 2.8% for larceny theft. These
differences can be explained from the many methodological
differences described above. Furthermore, from the main MSM
encompassing all 50 states, I have found even larger effects of
RTC laws on crime, that where always statistically significant
except for forcible rape. My main MSM takes into account more
fully the development of crime rates over time in the states that
have not implemented a RTC law.

In addition to the main synthetic control approach, Dono-
hue, Aneja, and Weber (2019) also fitted standard conditional
regression models (referred to as “panel data estimates”), on
all states. They found significant effects of 9.02% more violent
crime and 6.49% more property crime. Judging from my own
sensitivity analysis, these conditional estimates are likely to
underestimate the true effect, although the estimates of Dono-
hue, Aneja, and Weber (2019) are substantially larger than those
from variant 25 in Section 4.4. Donohue, Aneja, and Weber
(2019) also clearly demonstrated the instability that arises by
including the 36 demographic variables of Lott and Mustard
(1997) and Lott (2010).

Certainly, both from the present study and Donohue, Aneja,
and Weber (2019) can be concluded that the implementation of
a RTC law at the state level will cause a substantial increase in
violent crime.

5.5. Conclusion

This study demonstrates that marginal structural models
(MSMs), fitted by inverse probability weighting (IPW), are an
appropriate and convenient instrument for policy evaluation
in a longitudinal setting, comparing separate entities such as
states, cities or countries. This method allows for correction for
confounding variables, while avoiding the drawbacks of more
standard conditional models such as adjusting away the effect.
I have applied this method to this topic for the first time, while
addressing methodological shortcomings in previous studies.

The results from the present study support the conclusion
of Donohue, Aneja, and Weber (2019) that RTC laws increase
violent crime. However, while Donohue, Aneja, and Weber
(2019) estimated the effect of implementing a RTC law only in 33
states that did implement such a law using their novel synthetic
control approach, the present study estimates the difference in
having and not having a RTC law implemented in all 50 U.S.
states.

The results indicate that RTC laws cause a substantial
increase in both violent crime (7.5%) and property crime rates
(6.1%). In the 42 states with a RTC law in effect in 2016, the
increase corresponds to approximately 66.000 additional violent
crimes and 352.000 additional property crimes per year.
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including longitudinal plots of crime rates and predictors as described in
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