
Identifying causal risk and protective factors for relevant 
phenotypes constitutes a core objective across the bio-
medical, behavioural and social sciences. Examples of 
causal questions — some resolved, some still controver-
sial — include the following: Is vitamin E a protective 
factor for coronary heart disease (CHD)? Is the same 
true for high-​density lipoprotein cholesterol (HDL-​C)? 
Does higher income protect against depression? Does 
maternal smoking during pregnancy lower offspring 
birthweight? Does cannabis use increase the risk of 
schizophrenia, or is there an effect in the reverse direc-
tion? Answering such causal questions can advance fun-
damental knowledge of complex aetiological pathways 
and profoundly affect applied settings, such as public 
health and policy1.

The quest to answer causal questions faces major 
challenges. A primary challenge is confounding, in which 
a variable (or set of variables) causally influences both 
the risk factor and the outcome (for example, income 
affecting vitamin E intake and CHD). Confounding 
can generate associations between risk factors and 
outcomes in the absence of causal relationships. 
Genetic confounding occurs when genetic factors gen-
erate confounding (for example, variants associated 
with HDL-​C also directly affect CHD). Challenges to 
causal inference, detailed in Box 1, can lead to spuri-
ous findings in observational epidemiology because 
adjusting for key confounders is typically insufficient. 
For example, two major observational studies con-
cluded that higher consumption of vitamin E reduces 
risk of CHD2,3. These findings, reported in major 

media outlets, led to a substantial increase in vitamin E  
consumption4. However, subsequent randomized 
controlled trials (RCTs) reported null findings5. This 
illustrates the potentially disruptive impact of incorrect 
inference on our aetiological understanding of diseases 
and on public health.

RCTs, often regarded as the gold standard for causal 
inference, suffer from their own methodological short-
comings and may be infeasible and unethical (for 
example, random allocation to smoking during preg-
nancy)6–8. RCTs are also inefficient in the absence of 
reliable evidence to prioritize targets; for example, low 
drug development success rates result in US$2.6 billion 
costs per approved drug9. To tackle the limitations of 
RCTs and the challenges of causal inference, methods 
to strengthen causal inference in observational research 
have been developed over the past few decades. Among 
causal inference methods, genetically informed methods rep-
resent powerful tools to account for genetic and environ-
mental confounding. By genetically informed, we mean 
methods that exploit genetic information embedded in 
the study design, including data on familial relationships 
and/or on genetic variation.

Key features of the genome and its transmission 
at conception make such genetically informed meth-
ods particularly valuable for causal inference. First, 
the expected degree of genetic similarity is known 
for different types of relationships and is exploited in 
family-​based designs to control for genetic and envi-
ronmental confounding10. Second, the genetic sequence 
is fixed from conception and therefore free from reverse 

Causal risk and protective 
factors
Factors whose different values 
predict different risks of the 
outcome (either an elevated 
risk or a protective effect),  
with all other factors being held 
constant.

Phenotypes
Measurable individual 
characteristics.
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Box 1 | challenges to causal inference

even the poster child of 
causal relationships — 
smoking cigarettes causes 
lung cancer — was once 
controversial. in 1957, ronald 
Fisher, a founding father of 
modern statistics and 
statistical genetics, and 
himself a smoker, qualified 
smoking as “possibly an 
entirely imaginary cause” for 
lung cancer108. He argued that 
the observed association was 
due to genetic confounding, 
in his words “a common 
cause, in this case the 
individual genotype”. Most 
putative causal relationships 
are much harder to establish 
than this one, and 
confounding is the major 
challenge for causal 
inference. Confounding 
occurs when a third variable 
causes both the risk factor 
and the outcome (Fisher’s 
common cause), generating a 
spurious association. Genetic 
confounding occurs when an 
individual genotype is the 
third variable, in other words, 
when genetic factors 
affecting the environmental 
exposure also directly affect the outcome (for example, genetic factors affecting both cigarette smoking and lung cancer 
in the figure)7. Pleiotropy, a concept related to genetic confounding, is detailed in Box 3.

Gene–environment correlation109 can generate genetic confounding. active or evocative gene–environment 
correlations occur when the environment experienced by an individual is partly influenced by their genotypes.  
such gene–environment correlation explains why even environmental variables, such as educational attainment (see the 
figure) or bullying victimization, are partly heritable110–112. similarly, genetic variants in the CHrNa5–a3–B4 nicotinic 
receptor subunit gene cluster reliably predict smoking heaviness in smokers113,114. an exposure such as smoking can 
thus be genetically influenced. importantly, gene–environment correlations do not always generate confounding.  
this is because genetic variants may be associated with the exposure (here, smoking) but only indirectly associated 
with outcomes through that exposure. in such cases, these genetic proxies for exposures can be used to probe the 
causal role of these exposures on diverse outcomes (see the Mendelian randomization section in the main text).  
Passive gene–environment correlation occurs when children inherit parental genetic variants that contribute to the 
environment that parents create109. For example, smoking during pregnancy is genetically influenced, and the  
offspring can receive both the genetic variants associated with smoking and the smoking environment. such passive 
gene–environment correlation can confound observed associations between smoking during pregnancy and offspring’s 
outcomes (see the figure).

reverse causation constitutes another major issue. even if causal relationships are established between risk factors 
and outcomes, the direction may remain unclear. reverse causation is relevant to many causal questions; for example, 
does alcohol abuse cause depression, or does depression lead to alcohol abuse (see the figure)? No reverse causation 
exists between germline genetic variants and phenotypes. For example, alcohol abuse may cause a disease, or  
alcohol abuse may increase in response to disease onset. But germline genetic variants associated with alcohol  
abuse will not be modified by disease onset47, which is advantageous when using genetic variants for causal  
inference (Box 3).

Measurement error in the exposure or the outcome can hinder the detection of causal effects; for example, in the figure, 
imprecise measures of alcohol abuse may prevent the detection of its effect on depression. Conversely, even slight 
measurement error in confounders can lead to biased estimates as confounders are not appropriately controlled for115. 
Genetic proxies of exposures can be less susceptible to measurement error and reporting bias (for example, variants in the 
nicotinic receptor gene cluster predict objective measures of tobacco exposure better than they predict self-​reported 
smoking113).

Misidentification occurs when the putative causal risk factor is only a correlate of the true causal risk factor; for example, 
in the figure, the tobacco inside the cannabis joint causes cancer rather than the cannabis per se116. Misidentification may 
also happen when a genetic proxy for a given exposure is not entirely relevant to that exposure (Box 3), yielding causal 
estimates that do not accurately reflect the effect of the exposure under scrutiny.
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causation11 (Box 1). Third, the genome is randomized 
at conception, which is critical for the use of genetic 
variants as instrumental variables to strengthen causal 
inference, as implemented in Mendelian randomization 
(MR)12. Critical developments in recent years have 
allowed greatly increased applications of genetically 
informed methods. First, rapid methodological innova-
tions in the use of genetic variants as instrumental var-
iables have extended the range of phenotypes that can 
be studied and enabled more robust causal inference13. 
Second, the recent availability of massive genotyped 
and phenotyped data sets has considerably expanded 
the applicability of these methods14,15. Third, novel 
informatics tools allow data mining of these resources 
at phenome-​wide scale16,17. This has led to converging 
interests between epidemiologists, who are primarily 
concerned with modifiable exposures in the general 
population, and geneticists, who are concerned with 
the molecular mechanisms underlying diseases, traits 
and behaviours.

In light of these developments, we provide an integra-
tive review of the current range of genetically informed 
methods to strengthen causal inference. Considering 
these methods together allows us to outline a coherent 
framework to understand their commonalities and dif-
ferences and to explain how they should be integrated 
in the future to offer a rich causal inference toolbox. 
We start by delineating the counterfactual approach 
to causal inference, which offers a unifying language  
to understand current genetically informed methods 
for causal inference. We then discuss such methods in 
the following sections, describing family-​based methods 
and implementations of MR. Finally, we detail emerg-
ing methods that move the field forward by embedding 
genetic instruments within family-​based designs and by 
adopting phenome-​wide approaches to causal inference. 
We do not consider non-​genetically informed methods 
for causal inference1,18,19 nor the use of family-​based and 
genetic variation data to dissect the genetic architecture 
of phenotypes20,21.

A causal inference framework
The counterfactual (also known as potential outcomes) 
approach offers a unifying framework for causal infer-
ence that is relevant to genetically informed designs22. 
In a counterfactual scenario, an individual is simulta-
neously exposed and non-​exposed to a risk factor. In 
this hypothetical setting in which everything in addi-
tion to the exposure is the same, a causal effect can be 
defined as a difference in outcomes in the exposed and 
non-​exposed situations. For example, if an individual 
survives after a heart transplant, but the same individ-
ual dies without the transplant, we can conclude that 
the heart transplant caused survival in this individual. 
Naturally, such a scenario is impossible as an individual 
cannot be simultaneously exposed and non-​exposed to 
a risk factor. Consequently, strict causal inference can-
not be achieved because the counterfactual is missing 
in reality22. All causal inference methods — including 
RCTs — aim to approximate this ideal scenario by inves-
tigating substitutes that enable causal inference under 
reasonable assumptions.

To attain consistent causal inference, achiev-
ing or sufficiently approximating exchangeability is 
essential23. Intuitively, exchangeability occurs when 
exposed and non-​exposed groups are balanced on all 
confounders. In observational studies, vitamin E con-
sumers were not exchangeable with non-​consumers  
(for example, because of their income), leading to 
biased estimates. In subsequent RCTs, randomiza-
tion ensured exchangeability, and their findings sug-
gested no protective effect of vitamin E. Conditional 
exchangeability — when exchangeability holds in each 
stratum of a confounder — is sufficient to remove 
residual confounding and to compute consistent causal 
estimates if the confounder (or set of confounders)  
is controlled for.

Directed acyclic graphs (DAGs) provide a formal 
yet intuitive representation of causal inference24. A 
directed arrow between two variables indicates a causal 
relationship; that is, the (counterfactual) values of the 
variable at the origin cause corresponding (potential) 
outcomes in the variable at the destination. It can be 
useful to conceive the causal effect as the result of an 
intervention on the variable at the origin, holding all 
other variables constant. As depicted in Box 2, figure 
part a, blocking all confounders of an association 
between a risk factor and an outcome can ensure con-
ditional exchangeability. Genetically informed designs 
can approximate conditional exchangeability in two 
main ways. First, following the instrumental variable 
approach, genetic factors predicting an exposure can 
be used to estimate the effect of the exposure on an 
outcome (Box 2, figure part b). Second, designs such 
as the twin design can be used to control for genetic 
confounding and, to some extent, environmental con-
founding (Box 2, figure part c). Box 2, figure part d, 
combines these two approaches and constitutes a gen-
eral representation of causal inference using geneti-
cally informed designs. The designs we present in the 
following sections can be understood by referring to 
this general representation. Importantly, genetically 
informed designs for causal inference do not focus on 
genetic information as an end objective. Rather, they 
exploit genetic information as a means to attain reason-
able substitutes to the counterfactual scenario in order 
to estimate consistent causal effects.

Family-​based designs
Family-​based designs have been exploited to strengthen 
causal inference in observational research for dec-
ades and can tackle a wide range of causal questions, 
from the role of smoking during pregnancy on birth-
weight25 to the impact of income on depression26. 
Family-​based designs rely on a priori knowledge of 
genetic relatedness — or absence thereof — between 
family members (for example, identical twins versus 
adopted siblings). As such, genotyping is not necessar-
ily required. Family-​based designs for causal inference 
have in common their ability to control for (some) 
genetic confounding. They differ with regard to the 
extent to which they control for genetic confounding, 
their ability to control for non-​genetic confounding  
and their applicability.

Confounding
A phenomenon whereby a 
variable (the confounder) has a 
causal effect on both the risk 
factor and the outcome, 
generating a spurious 
association between the two.

Genetic confounding
Confounding created by genetic 
factors influencing both the risk 
factor and the outcome.

Causal inference methods
Methods that aim to clarify the 
causal status of a risk factor, 
either by providing a direct 
estimate of the causal effect or 
by ruling out possible sources 
of confounding (for example, 
removing the possibility of 
genetic confounding).

Genetically informed 
methods
Methods that use genetic 
information, such as known 
genetic relationships (for 
example, twins) or genetic 
variation data.

Instrumental variable
A variable that is used as a 
proxy for an exposure X to 
estimate the causal effect of X 
on an outcome. This variable 
must be robustly associated 
with X, independent of all 
confounders of the effect of X on 
an outcome Y, and its effect on Y 
must be entirely mediated by X.

Mendelian randomization
A method that uses single 
nucleotide polymorphisms 
(SNPs) associated with an 
exposure as instruments to 
probe the causal nature of the 
relationship between this 
exposure and an outcome of 
interest.

Counterfactual
Also known as potential 
outcomes. The counterfactual 
is a treatment (or value of a risk 
factor) that an individual is not 
exposed to. The potential 
outcome is the outcome that 
would be obtained under this 
counterfactual treatment.

Exchangeability
Verified when the expected 
outcome in the non-​treated 
group would have been the 
same as the outcome in the 
treated group if subjects in the 
non-​treated group had 
received the treatment. 
Conditional exchangeability 
occurs when exchangeability is 
verified in each stratum of a 
confounder after conditioning 
(adjusting) for the confounder.
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Sibling and twin designs. These designs approximate 
the counterfactual situation because a non-​exposed sib-
ling or twin represents a natural match to their exposed 
co-​sibling or twin10,27. Siblings and dizygotic (DZ) twins 
share 50% of their segregated genetic material on aver-
age. Monozygotic twins (MZ) share 100% of their genetic 
material (with exceptions28). By definition, shared envi-
ronmental factors are all environmental factors that  
contribute to the similarity of family members and 
are 100% in common between the two members of 
a sibling, DZ or MZ pair. In the case of a binary expo-
sure, some sibling and twin designs for causal infer-
ence therefore compare outcomes in exposed versus 
non-​exposed pair members. Genetic confounding is 
entirely controlled for only in MZ twins (that is, block-
ing all backdoor paths through G in Box 2, figure part c),  

yielding more accurate causal estimates than siblings or 
DZ twins. Sibling and twin designs also control for con-
founding by shared environment. For example, as parental 
age at birth does not differ between members of a twin 
pair, confounding effects of parental age are removed.  
A powerful feature of these designs is that they account for 
unobserved confounding by unmeasured genetic variation 
or shared environment. Effect estimation in these models, 
also called family fixed effects models, is straightforward 
for discordant designs (binary exposure) and differences 
designs (continuous exposure)10,29–31. Other estimation 
methods can be used, such as structural equation modelling32.

Sibling and twin designs have been applied to a vari-
ety of causal questions in many disciplines, for example, 
confirming that smoking causes lung cancer33 and lowers 
long-​term earnings34 and suggesting that higher income 

Box 2 | Directed acyclic graphs for causal inference exploiting genetics

Directed acyclic graphs (DaGs) provide a useful graphical language for 
causal inference in general and for genetically informed causal inference 
methods in particular. the DaGs displayed here provide a conceptual 
framework to understand methods presented in this review: part a of the 
figure illustrates key DaG concepts; parts b and c represent two main ways 
in which genetically informed designs can strengthen causal inference; 
and part d shows how these two approaches can be merged into a single 
representation.

the figure, part a, illustrates four alternative DaG structures. solid 
arrows represent a directed causal path. No arrow means no directed path. 
in (i), a → B → C is a directed path: all arrows point forward. in (ii), 
a ← C → B is a backdoor or unblocked path: a is associated with B through 
C. such an unblocked path creates an observed association between a and 
B, even in the absence of a causal path (no a → B). C is thus a confounder, 
generating a correlation between a and B, despite neither causing the 
other. in ‘potential outcomes’ terminology, exposed and non-​exposed 
participants on factor a are not exchangeable. Formally, exchangeability 
requires that potential outcomes are independent of the observed 
exposure22. For example, we assume that, in a randomized controlled trial 
(rCt), observed levels of B in the treatment group (a1) would have been 
the same in the control group (a0) had control participants been exposed 
to the treatment. Here, C prevents exchangeability, leading to a biased 
estimate of a → B. in (iii), C is a collider: arrows ‘collide’ at C. the path 
a → C ← B is blocked: a is not associated with B through C. Controlling for 
a collider (C) creates a spurious correlation between a and B. in (iv), the 
exposure–outcome path X → Y (red) is confounded. Controlling for C  
(the square around C) blocks the backdoor path X ← C → Y. However, 
controlling for the collider C unblocks the path X ← a--B → Y, which 
confounds X → Y. Controlling for C alone is therefore not sufficient, but 
controlling in addition for either a or B solves this problem by blocking this 
newly created path117. to ensure conditional exchangeability of exposed 
and non-​exposed individuals, all backdoor paths between X and Y should 

be blocked. when this is achieved (here by controlling for C and a or B), 
then X is d-​separated from Y, which provides an unconfounded causal 
estimate of X → Y.

the figure, part b illustrates an instrumental variable analysis, using an 
instrument Z to estimate X → Y. to conclude that X is a causal risk factor for 
Y, three assumptions must be satisfied: relevance, exchangeability and 
exclusion restriction. relevance implies that the chosen instrument Z 
reliably predicts the risk factor of interest (solid Z → X arrow). second, the 
instrument must be independent of all observed (O) and unobserved (u) 
confounders to ensure exchangeability between exposed and non-​
exposed individuals (no Z → O,u). third, exclusion restriction means that, 
conditional on exposure and confounders, the instrument is independent 
of the outcome. More intuitively, exclusion restriction signifies that the 
genetic instrument must affect the outcome exclusively through its effect 
on X (that is, solid path Z → X → Y but no other path from Z to Y)118.

in the figure, part c, G represents a latent variable capturing all genetic 
influences on X, Y and O,u. Note that the previous conditions for an 
instrumental approach are not satisfied: G directly influences both Y and 
O,u. to estimate the causal effect of X on Y — that is, to d-​separate X from 
Y — it is necessary to adjust for G and O,u. Naturally, d-​separation is 
challenging because all relevant genetic variants and environmental 
confounders must have been identified and measured without error, which 
highlights the difficulty of causal inference in observational research.

the figure, part d provides a general representation of approaches for 
causal inference using genetic data, combining the instrumental and the 
direct control for confounders. Note that the dashed lines represent 
violations of instrumental variable assumptions: instrument Z is related to 
confounders; Z is directly related to Y; Z is associated with Y through its 
association with other genetic factors (G), owing to shared genetic ancestry 
(sga)

119; Z is associated with Y via sa → O,u (for example, shared cultural 
ancestry affecting social factors). Z–G interactions and Z–O,u interactions, 
not represented here, can also generate assumption violations.
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and access to green spaces are protective factors for 
depression26,35. Longitudinal extensions of these designs 
constitute powerful tools to study the duration of effects 
and reciprocal relationships. For example, evidence from 
a twin differences design shows that the consequences of 
exposure to bullying in childhood might be shorter term 
than suggested by classical longitudinal studies36. Using 
a longitudinal twin differences design, attention deficit 
hyperactivity disorder (ADHD) symptoms have been 
shown to be more predictive of future autistic spectrum 
disorder (ASD) symptoms than the reverse, that is, ASD 
symptoms predicting future ADHD symptoms37.

Although they control more stringently for confound-
ers than non-​genetically informed designs, sibling and 
twin designs are limited in that they cannot account by 
design for non-​shared environmental confounding. For 
example, MZ twins discordant for smoking could differ in 
other lifestyle choices, such as alcohol consumption, which 
may confound the association between smoking and out-
comes. Controlling for relevant observed non-​shared 
environmental confounders, such as alcohol consumption, 
can mitigate this issue (that is, controlling for the non-​
shared component of O but not U in Box 2, figure part c;  
see also ref.38). Furthermore, measurement error can be 
a problem in twin and sibling causal inference designs 
as different degrees of measurement error between the 
causal and caused variables can bias inference. This can be 
addressed by directly modelling measurement error when 
it can be estimated or by conducting a sensitivity analysis to 
determine how much difference in measurement error is 
needed to change the conclusion38–40. Another important 
limitation concerns exposures that do not vary between 
pair members. For example, twins are perfectly matched 
for parental age or family income, and such exposures that 
do not vary within the family cannot be used as predictors 
in discordant or differences designs. By contrast, paren-
tal age can differ between siblings, and the sibling design 
has been used to demonstrate that paternal age at birth is 
likely to have widespread effects on offspring psychiatric 
and academic outcomes that often remain undetected in 
classical observational studies41.

Adoption-​at-birth and in vitro fertilization designs. 
These designs compare associations between risk factors 
and outcomes in genetically related and unrelated parent–
child pairs (or trios). Adopted children are genetically 
unrelated to their adoptive parents. In vitro fertilization 
(IVF) can use either parental gametes (genetically related) 
or donor gametes (genetically unrelated) for fertilization. 
Associations in genetically unrelated pairs are free from 
genetic confounding owing to passive gene–environment 
correlation (Box 1). These designs are appropriate for 
examining intergenerational effects. For example, smok-
ing during pregnancy associates with lower birthweight. 
However, maternal genetic factors contribute to smoking 
during pregnancy; when transmitted to the offspring, the 
same genetic factors may influence birthweight, thereby 
generating an association even in the absence of an effect 
of smoking. An IVF study demonstrated that smoking 
during pregnancy was predictive of lower birthweight 
in both genetically related and unrelated mother–child 
dyads, ruling out genetic confounding25. Similarly, the 

adoption-​at-birth design has been used to investigate 
the role of parental psychiatric morbidity in child devel-
opmental outcomes42. The key limitation of these designs 
is that, unlike MZ twins, they do not control for envi-
ronmental confounding. Therefore, it becomes necessary 
to adjust for observed confounders, with the limitations 
inherent in that approach.

Direction of causation model. The classical twin design 
aims to decompose the variance of a phenotype into 
heritability (additive (A) and dominance (D) effects) and  
environmental influences (subdivided into shared (C)  
and non-​shared (E) effects). The insight behind the direc-
tion of causation (DoC) model is to use these A(D)CE  
components as instruments to investigate causal relation-
ships (similar to Box 2, figure part b). Interestingly, using 
A(D)CE components of each phenotype as instruments 
for the other phenotype enables the investigation of 
reciprocal causal relationships in cross-​sectional designs 
(similar to bidirectional MR, see below)43,44. The DoC 
model has been implemented, for example, to investi-
gate the genetic overlap between cognitive functions and 
schizophrenia. Findings showed that around a quarter of 
the variance in liability to schizophrenia was explained by 
variation in cognitive function45. However, the scope of 
application of the DoC model has been limited, as a con-
dition required for its implementation is that the variance 
components should not be equal for both phenotypes. 
This condition can be satisfied, for example, when une-
qual proportions of variance are explained by A, C and 
E for each phenotype or when ADE components explain 
one phenotype and ACE components the other. More 
similar components lead to decreasing statistical power.

Mendelian randomization
Over the past decade, MR has become a method of choice 
to strengthen causal inference in observational research. 
MR is used to investigate an ever-​growing set of causal 
questions, from the role of molecular biomarkers in CHD 
to behavioural questions, such as possible reciprocal effects 
between cannabis use and schizophrenia. In contrast to 
family-​based designs described in the previous section, 
MR exploits genotyping data, most often in unrelated indi-
viduals. MR is founded on the realization that a genetic 
variant associated with an exposure X can be used as an 
instrumental variable to estimate the causal effect of X on 
an outcome of interest11,12,46 (Box 2, figure part b). Genetic 
instruments — typically single nucleotide polymorphisms 
(SNPs), although other sequence variants could be used — 
can approximate the counterfactual situation. Individuals 
carrying the risk allele have higher (or lower) levels of X on 
average than individuals with no risk allele. According to 
Mendel’s laws of segregation and independent assortment, 
we can assume that the resulting exposed and non-​exposed 
groups satisfy the condition of exchangeability47,48. When 
certain assumptions are satisfied (see below), a difference 
in the outcome between individuals with and without the 
risk allele can be attributed only to the causal influence of X.  
To a certain extent, MR can thus be construed as a natural 
experiment analogue to RCTs in which participants are 
allocated to different exposure levels independently of con-
founding12,49 (hence the term Mendelian randomization, as 

Genetic relatedness
Occurs when two individuals 
share a proportion of their 
genome identical by descent, 
as a result of inheritance from a 
recent common ancestor.

d-Separated
An exposure X and an outcome 
Y are d-​separated through the 
process of d-​separation, in 
which all backdoor paths 
between X and Y are blocked, 
to estimate the unconfounded 
effect of X on Y.

Relevance
A core assumption of 
instrumental variable 
estimation, whereby the 
instrument used must be 
robustly associated with the 
exposure of interest.

Exclusion restriction
A core assumption of 
instrumental variable 
estimation whereby the effect 
of the instrument on the 
outcome must act entirely 
through its effect on the 
exposure (that is, not directly 
and not via confounders or 
other mediators).

Backdoor paths
Also known as unblocked 
paths. A path between an 
exposure X and an outcome Y 
through a confounder, which 
biases the estimation of the 
causal effect of X on Y.

Structural equation 
modelling
Multivariate statistical 
technique combining factor 
analysis and regression 
analysis to estimate networks 
of relationships between latent 
and observed variables.

Sensitivity analysis
An analysis conducted to 
assess how robust an 
association of interest is to 
potential unobserved 
confounding or other sources 
of bias.

Heritability
The proportion of variance in a 
phenotype that can be 
attributed to genetic 
differences among individuals 
in a given population. Narrow-​
sense heritability estimates 
additive genetic effects. Broad-​
sense heritability includes both 
additive and dominance 
effects.
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genetic allocation, similar to randomized allocation, gen-
erates variation in the exposure that, under assumptions, 
should be unaffected by confounding).

A classic example relies on variants in the CRP gene 
to assess the health consequences of elevated circulating 
C-​reactive protein (CRP), a marker of systemic inflam-
mation50,51. In an early study, the SNP rs1059 was used as 
an instrument to investigate whether elevated CRP levels 
influence blood pressure. The concentration of CRP was 
1.81 mg/l (log) in carriers of the GG genotype and 1.39 in 
non-​carriers (P < 0.001)51. Strikingly, although circulating 
CRP levels were strongly associated with many measured 
confounders, such as low-​density lipoprotein cholesterol 
(LDL-​C) and socioeconomic status, the genetic instru-
ment was independent of all measured confounders. 
This suggests exchangeability between GG carriers and 
non-​carriers and illustrates the benefits of using genetic 
instruments rather than observed CRP levels for causal 

inference. Comparing outcomes between GG carriers 
and non-​carriers suggested no causal relationship, with 
systolic blood pressure of 147 mmHg in both groups 
(P = 0.98). Subsequently, MR analyses have demonstrated 
that CRP is likely to be a simple marker rather than a 
causal risk factor for many phenotypes, including CHD, 
lung function and depression, although unexpected sug-
gestive evidence of a protective effect on schizophrenia 
has recently been reported52–55. MR analyses have also 
demonstrated that, similar to vitamin E, vitamin D levels 
appear unlikely to be causally related to CHD56 although 
they do appear to be causal for multiple sclerosis57.

To derive reliable causal estimates from MR, genetic 
instruments must satisfy instrumental variable assump-
tions. The core assumptions are not fully testable and 
constitute a serious threat to inference validity (Box 3). 
Genetic instruments extracted from a single gene with 
a well-​understood biological function, such as CRP, are 

Box 3 | Mendelian randomization: principles and assumptions

a genetic instrument Z must satisfy the 
assumptions of relevance, exchangeability 
and exclusion restriction (Box 2). relevance 
can be tested by using genetic association 
studies for X, which provide an effect size 
estimate (βzx) and a test of significance120 
(see the figure, part a). exchangeability can 
be tested by examining whether Z predicts 
observed confounders (dashed Z → O 
representing associations that should not be 
present). For example, a genetic instrument 
for C-​reactive protein (CrP) was found to be 
independent of 21 potential observed confounders of the association between CrP and coronary heart disease 
(CHD)120. Generally, genetic instruments are likely to provide more reliable causal estimates of X → Y (red) than direct 
estimates using observed X and Y, even when controlling for observed risk factors. One study121 demonstrated that 96 
behavioural, socioeconomic and physiological characteristics were strongly interrelated. By contrast, genetic variants 
showed no more associations with these potential confounders than expected by chance. Despite these encouraging 
findings, exchangeability cannot be proved because some relevant confounders may be unobserved. to fulfil the 
exclusion restriction assumption, there should be no direct causal path from Z to Y. Note that the observed βzy is not 
null. However, the exclusion restriction assumption implies that the observed βzy results only from the indirect effect 
through X, that is, βzy = βzx*βxy. Based on observed βzx and βzy, we can therefore estimate the causal estimate (βxy) 
using the ratio βxy = βzy/βzx. a relevant instrument can be weak (significant but small βzx). a weak instrument leads to a 
small denominator (βzx), which results in imprecise estimates and biases the estimated causal effect towards the 
observational association when βzx and βzy are estimated in the same sample, or towards the null when they are 
estimated in independent samples122. Notably, if the three aforementioned assumptions are satisfied, we can conclude 
that X causes Y, but additional parametric assumptions (for example, linearity) are required for the ratio to be reliable120.

the notion of pleiotropy123 — when a genetic locus affects more than one phenotype — is key when assessing 
exclusion restriction. Mediated pleiotropy124 (also called vertical pleiotropy125, or causality86) occurs when Z and Y 
associate because Z affects Y through X. this fulfils the exclusion restriction assumption and is consistent with causality. 
unmediated or biological pleiotropy124 (horizontal pleiotropy125, or simply, pleiotropy86) is when Z affects both X and Y 
but through different pathways. such pleiotropy can be direct, as in the path from Z to Y in the figure, part a, or indirect 
either via O,u or via intermediate pathways P in the figure, part b. this type of pleiotropy is informative about shared 
aetiology (X and Y are both caused by P), but the instrument will yield biased βxy. Finally, spurious pleiotropy124 is when 
two (rather than one) causal variants explain Z and Y, but the variants are in linkage disequilibrium — that is, associated 
because of shared ancestry (sga in the figure, part b)119. exclusion restriction is violated as the observed βzy reflects not 
only Z → X → Y but also the association via other variant or variants in G. Note that Z need not be a causal variant for X. 
Z can be tagging a causal variant affecting X if both tagging and causal variants fulfil exchangeability and exclusion 
restriction assumptions118. Finally, dynastic effects also violate the exclusion restriction assumption76. Dynastic effects 
occur when parental genotypes affect the child via the environment that parents create for their child by affecting the 
parental phenotype accordingly (also called ‘genetic nurture’ as genotypes affect the nurturing environment126,127).  
as a result, the genetic instrument in the child is correlated with the environment created by the parents. Dynastic 
effects therefore open a backdoor path between instruments and outcomes via parental environments.

Genetic instruments have additional advantages (for example, reducing reverse causation, reporting bias and 
measurement error) and limitations (for example, limited power, population stratification and developmental 
compensation) that are summarized elsewhere12,48,49,120.
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Environmental influences
Influences that contribute to 
make two individuals (for 
example, twins) similar (shared 
environmental influences) or 
dissimilar (non-​shared 
environmental influences) to 
each other.

Single nucleotide 
polymorphisms
(SNPs). DNA sequence 
variation arising from 
differences in a single 
nucleotide: adenine (A), 
thymine (T), cytosine (C) or 
guanine (G).
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more likely to meet these assumptions, enabling reliable 
causal inference and providing targets for pharmacologi-
cal interventions13. However, such monogenic instruments 
are unavailable for many exposures, leaving only imperfect 
instruments. Highly polygenic influences on most pheno-
types imply small individual SNP effects, which creates 
potential problems with weak instruments unless large 
samples are used58. Polygenicity also implies that pleiotropy 
is widespread59, potentially (but not necessarily) resulting 
in invalid instruments (detail in Box 3). Fortunately, poly-
genicity also provides an antidote in the form of multiple 
instruments for any given exposure. In recent years, con-
siderable efforts have been devoted to extensions of MR, 
allowing for multiple imperfect instruments, which we 
consider in the following section60–62.

Extensions of Mendelian randomization
Dealing with imperfect instruments. Modelling 
multiple imperfect instruments together can sub-
stantially increase power48,63 and mitigate problems 
owing to weak instruments58,64,65. Figure 1a illustrates 
the use of multiple instruments derived from relevant 
genome-​wide association studies (GWAS) to assess the 
effect of LDL-​C on CHD. Estimates of the associa-
tion between genetic instruments and CHD (βzy) are 
regressed on estimates of the association between instru-
ments and LDL-​C (βzx, see Box 3). We expect that, if 
LDL-​C → CHD is causal, then instruments with larger 
effects on LDL-​C should have proportionally larger 
effects on CHD. The slope of this regression estimates 
the causal effect; a flat line implies no causation. The 
effect estimated from multiple instruments is more 
precise than the effect based on a single SNP (Fig. 1a).

As illustrated in Fig. 1a, most but not all SNPs are 
aligned with the regression line, resulting in heterogeneity 
in causal estimates. In the context of MR, heterogene-
ity occurs when estimates derived from each genetic 
variant do not all converge to the same causal estimate. 
Heterogeneity, which can be assessed via graphical inspec-
tion and statistical tests, can result in misleading causal 
conclusions. Heterogeneity may stem in part from plei-
otropy (Box 3): in addition to its effect on CHD through 
LDL-​C, a SNP may have an effect through other pathways, 
explaining a greater or lower than expected association 
with CHD. Several methods jointly modelling multiple 
instruments have been proposed to allow for such invalid 
instruments (see Table 1; these methods cannot be imple-
mented for instruments using a single genetic variant, for 
which the validity of the instrument has to be assumed). 
For example, MR-​Egger regression quantifies pleiotropy 
by estimating an intercept in addition to the slope in 
the regression shown in Fig. 1a and can yield consistent 
causal estimates even when all individual instruments are 
invalid60. Compared with the inverse variance weighted 
method, which does not account for unbalanced pleio
tropy (see Table 1), the MR-​Egger regression estimate is 
reduced for LDL-​C and more so for HDL-​C (Fig. 1a,b).

Bidirectional Mendelian randomization. This 
approach investigates possible reciprocal causal rela-
tionships between two phenotypes. For example, 
cannabis use has been implicated in the aetiology 

of schizophrenia, but reverse causation is possible66. 
Bidirectional MR uses genetic instruments for can-
nabis use to investigate the cannabis → schizophrenia 
relationship and genetic instruments for schizophre-
nia to investigate schizophrenia → cannabis (Fig. 1c,d). 
A first attempt to investigate this question demon-
strated that bidirectional causal influences are plau-
sible66,67. Importantly, reverse causation between an 
exposure and an outcome violates an assumption of 
MR that is explicit in the directed effect of X on Y 
(Box 3, figure part a). Therefore, results from bidirec-
tional MR can currently be regarded as only suggestive 
(see the caption of Fig. 1).

Multivariable Mendelian randomization. This method 
considers several exposures simultaneously and thus 
allows direct modelling of possible pleiotropic pathways 
that would violate MR assumptions68,69. For example, 
SNPs associated with either HDL-​C, LDL-​C or triglyc-
erides are often associated with the other two. Therefore, 
genetic instruments for HDL-​C may affect CHD 
through pathways other than HDL-​C levels, violating a 
key assumption of MR. Recently, multivariable MR and 
MR-​Egger regression have been combined to further test 
for pleiotropy62. Using multivariable MR-​Egger regres-
sion, we updated previous findings65 based on the most 
recent GWAS for lipids and CHD14,70. Findings confirm 
the robustness of the effects of LDL-​C; however, the 
ostensibly protective role of HDL-​C reported in univar-
iate analyses is not confirmed when using multivariable 
MR-​Egger regression (Fig. 1a,b and caption).

Intergenerational Mendelian randomization. Similar 
to the IVF design, intergenerational MR capitalizes on 
information regarding the mother–child genetic related-
ness to account for passive gene–environment correla-
tion. In contrast to the IVF design, intergenerational MR 
exploits measured genotypes and accounts for environ-
mental confounding. Intergenerational MR was imple-
mented to demonstrate that higher maternal body mass 
index (BMI) and higher levels of fasting glucose predict 
larger birthweight in offspring71. Importantly, simply 
deriving instruments from maternal genotypes cannot 
rule out passive gene–environment correlation. Indeed, 
the association between maternal genetic instruments 
and offspring outcomes may arise from the transmission 
of risk alleles rather than from the causal influence of 
maternal BMI. Controlling for the genetic instrument in 
the offspring is a first step to address this issue. However, 
it creates a collider bias (Box 2) with the paternal geno-
type, reintroducing confounding72. Two approaches have 
been proposed to deal with this problem: controlling 
for paternal genotypes (requiring genotypes on mother, 
father and child)72, and second, splitting the genetic 
instrument for the mother into two instruments com-
prising the non-​transmitted and transmitted alleles73. 
The non-​transmitted alleles enable causal estimation, 
whereas the transmitted alleles reflect genetic transmis-
sion. Notably, splitting the genetic instrument substan-
tially limits power because power in MR largely depends 
on how much variance in the predictor is explained by 
the genetic instrument63.

Polygenic
Influenced by variants in many 
genes.

Pleiotropy
Occurs when a genetic locus 
(for example, a single 
nucleotide polymorphism 
(SNP)) affects more than one 
trait.

Genome-​wide association 
studies
(GWAS). Studies in which 
hundreds of thousands to 
millions of genetic variants are 
tested for an association with a 
phenotype.

Heterogeneity
When several estimates of the 
same effect do not converge 
towards the same value, 
whether in meta-​analyses or in 
Mendelian randomization 
analyses using many genetic 
instruments.

Collider bias
When a variable (the collider) is 
independently caused by the 
exposure and outcome of 
interest; controlling for it 
creates an association between 
exposure and outcome.
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Emerging approaches
MR studies described in the two previous sections typically 
involve selecting a set of SNPs as instruments, using these 
instruments to investigate one (or a few) risk factor(s) 
and one outcome, and testing whether they are causally 
related. Here, we describe emerging approaches that go 
beyond these three features, particularly by exploiting 

genome-​wide and phenome-​wide information to delineate 
complex pathways between multiple phenotypes.

Polygenic scores. Genetic instruments derived from-
allelic scores typically use a limited number of SNPs, 
from a few to a few hundred, thereby leaving out most 
causal SNPs in the genome and potentially limiting 

Allelic scores
Computed as a polygenic score 
but summarizes genetic 
information derived from a few 
to a few hundred single 
nucleotide polymorphisms 
(SNPs) as opposed to 
polygenic scores, which rely on 
thousands up to all SNPs in the 
genome.
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Fig. 1 | including multiple instruments in Mendelian randomization. Each dot corresponds to one genetic variant, with 
a 95% confidence interval (CI) of its association with the risk factor (horizontal) and the outcome (vertical). Regression lines 
correspond to different estimators (listed in the legend and explained in Table 1); numerical results are given for the 
inverse variance weighted (IVW) and Mendelian randomization (MR)-Egger regression methods. a | Association between 
low-​density lipoprotein cholesterol (LDL-​C) and coronary heart disease (CHD) (138 single nucleotide polymorphisms 
(SNPs)). Causal estimate derived from a single SNP (rs11591147) is 0.53 (95% CI 0.30–0.77), which is less precise than the 
estimate derived from all SNPs (0.47; 95% CI 0.40–0.54); multivariable MR-​Egger estimate (386 SNPs) is 0.41 (95% CI 
0.34–0.48); all estimates are consistent with causality. b | Association between high-​density lipoprotein cholesterol (HDL-​C) 
and CHD (183 SNPs). Multivariable MR-​Egger estimate is −0.03 (95% CI −0.10–0.03), which is not consistent with causality. 
c | Association between initiation of cannabis use and schizophrenia (21 SNPs); the IVW estimate is consistent with 
causality. d | Association between schizophrenia and initiation of cannabis use (107 SNPs); the IVW estimate is consistent 
with causality. Bidirectional MR (parts c and d) requires that the instrumental variable assumptions hold in both directions. 
Instruments with direct effects on both exposure and outcome are not informative on the direction of causality. Additional 
details on the data sources and analysis methods to generate this figure are provided in Supplementary information.
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power. The justification for such severe ascertainment 
is that polygenic scores with many more SNPs are more 
likely to violate instrumental variable assumptions 
(Box 3). First, polygenic instruments are more likely 
to correlate with confounders. For example, one study 

showed that both allelic scores made of known variants 
and truly polygenic scores using hundreds of thousands 
of SNPs for BMI, LDL-​C and CRP predicted diseases, 
as expected74. However, the polygenic scores were less 
specific, associating with more traits and thus more 

Table 1 | estimators for Mendelian randomization using summary statistics

Method implementation Limitations Refs

IVW-​based methods The IVW method involves a weighted linear 
regression of SNP effects on the outcome on SNP 
effects on the risk factor, without an intercept 
term. The regression slope is equivalent to a 
weighted average of the ratio estimates (Box 3) 
based on the precision of the causal estimate for 
each SNP used as an instrumenta,b. IVW methods 
are more powerful than other methods (for 
example, MR-​Egger)

Unlike the other methods 
described below , IVW cannot 
account for directional 
(unbalanced) pleiotropyc. 
Balanced pleiotropic 
effectsd can be accounted 
for in random-​effects IVW 
models (by allowing for 
heterogeneity) if the InSIDE 
assumptione holds true

129

Methods based on Egger 
regression

Linear regression with an intercept term using 
inverse variance weightsa,b. MR-​Egger regression 
provides consistent estimates even if all genetic 
instrumental variables are invalid under the 
InSIDE assumptionc. This analysis is robust to 
directional (unbalanced) pleiotropyc. The intercept 
can be interpreted as the average pleiotropic 
effect across the genetic instrumental variables. 
Significance of the intercept term indicates the 
presence of unbalanced pleiotropy or violation of 
the InSIDE assumptione

Egger regression is less 
efficient and powerful than 
other methods because it 
allows for heterogeneity due 
to pleiotropy. It requires the 
InSIDE assumptione

60

Median-​based methods Median-​based methods allow some (but not all) 
instrumental variables to be invalid instruments. 
The median estimate is obtained by first calculating 
the ratio causal estimate for each instrumental 
variable and then taking their median. In the 
unweighted version, each genetic instrumental 
variable receives equal weight in the analysis.  
In the weighted version, the median is calculated 
using the inverse variance weightsb. Median-​based 
methods are more robust to directional pleiotropy 
than IVW and are more robust to individual genetic 
variants with outlying causal estimates than IVW 
and MR-​Egger regression

These methods assume 
that at least 50% of the 
instrumental variables 
are valid instruments 
(unweighted median 
estimates) or that the 
instrumental variables 
that represent 50% of the 
weight in the analysis are 
valid instruments (weighted 
median estimates)

61

Mode-​based methods These methods allow the majority of the genetic 
instrumental variables to be invalid instruments 
under the ZEMPA assumptionf. In the unweighted 
version of the mode estimate, each genetic 
instrumental variable receives equal weight 
in the analysis. In the weighted version, the 
mode is calculated using the inverse variance 
weightsb. Mode-​based methods are more robust 
to directional pleiotropy than IVW and more 
powerful than MR-​Egger regression

The methods assume 
that the largest number 
of instrumental variable 
estimates comes from 
valid instruments (ZEMPA 
assumptionf), that is, that the 
invalid instrumental variables 
have heterogeneous effect 
estimates. They have less 
power than IVW and median 
methods

130,131

Multiple methods In practice, it is recommended to apply each of these methods to assess the 
robustness of the assumptions relevant for the different estimators, including 
the IVW estimator (all instruments are valid), the Egger estimator (all instruments 
may be invalid if the InSIDE assumptione is verified) and the median and modal 
estimators (a subset of genetic variants are valid instruments)

132

InSIDE, instrument strength independent of direct effects; IVW, inverse variance weighted; MR , Mendelian randomization;  
SNP, single nucleotide polymorphism; ZEMPA , zero modal pleiotropy assumption. aCan also be calculated using robust estimates, 
which downweights the contribution of instrumental variables with outlying ratio estimates. This can reduce bias and imprecision 
owing to the influence of outlying variants. bCan also be calculated using penalized estimates, which downweights or penalizes the 
contribution of instrumental variables with heterogeneous ratio estimates and gives more weight to genetic variants with 
homogeneous ratio estimates. This can reduce bias and imprecision if a small number of candidate instruments have 
heterogeneous or outlying causal estimates. cDirectional (unbalanced) pleiotropy. Pleiotropic effects are more (or less) likely to be 
positive than negative, resulting in an average pleiotropic effect that is different to zero (significant intercept in MR-​Egger 
regression under the InSIDE assumption). dBalanced pleiotropy. Pleiotropic effects are equally likely to be positive as negative (that 
is, ratio estimates for individual SNPs above or below the true causal value), resulting in a null average pleiotropic effect.  
eThe InSIDE assumption is the assumption that pleiotropic effects are independent of the effects on the exposure, which is untestable 
and is violated when the pleiotropic effects act via confounders of the exposure and outcome. fThe ZEMPA states that the largest 
subset of genetic instrumental variables with the same ratio estimate comprises the valid instruments.
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potential confounders, thereby constituting questiona-
ble instruments for their respective exposure (see also 
ref.75). Dynastic effects (Box 3) are a special case, in which 
a genetic instrument acts as a proxy not only for the 
exposure (for example, child BMI) but also for an envi-
ronmental effect (for example, the obesogenic environ-
ment created by parents). Second, polygenic instruments 
are likely to include many variants with problematic 
pleiotropic effects, that is, influencing the outcome not 
exclusively via the exposure (Box 3).

A possible strategy for circumventing these issues is 
to integrate polygenic scores, used as instruments, with 
family-​based designs (either family fixed effects31,76 or 
DoC models77). In family fixed effects models, differ-
ences in the outcome between siblings (or DZ twins) 
can be explained using differences in sibling’s polygenic 
scores as an instrument31. Given the properties of fam-
ily fixed effects designs (see above), such an instrument 
is independent of all confounders shared between sib-
lings. Dynastic effects are also controlled for because 
environmental conditions created by the parents are 
shared between siblings. Notably, dynastic effects  
are not controlled for in MR on unrelated individuals, 
highlighting the benefit of embedding genetic instru-
ments within family-​based designs. More generally, MR 
is only absolute in within-​family designs, as the genetic 
material is randomized in transmission from parent to 
child, whereas the randomization is approximate at a 
population level78,79.

A DoC model integrating a polygenic score as an 
instrument can be identified in several ways, entailing 
trade-​offs between different assumptions77. One possi-
bility is to assume the absence of non-​shared environ-
mental confounding, similar to the twin differences 
design (see above). This enables direct estimation of 
pleiotropic effects by modelling both directed paths 
from the instrument to the exposure and from the 
instrument to the outcome. Releasing the no-​pleiotropy 
assumption in this way provides a promising method 
to account for the pleiotropy introduced by the use of 
polygenic scores. Theoretical and empirical research 
regarding these models is still limited but can develop 
in diverse ways. For example, an increased number of 
parameters could be identified by including a wider 
range of relationships from extended pedigrees or 
distantly related individuals, potentially reducing the 
assumptions required77.

Phenome-​wide approaches and shared aetiology. 
The wide availability of summary association statistics80 
enables phenome-​wide approaches to investigate 
relationships between thousands of phenotypes. 
Genetic correlations quantify the magnitude of the 
shared genetic aetiology between phenotypes16 (Fig. 2a). 
Often, the existence of shared genetic aetiology is more 
relevant than strict causality, such as when an interven-
tion on the exposure cannot be achieved, as for adult 
height74 or age at menarche81. In these cases, strict 
adherence to the MR assumption of no pleiotropy is less 
important than the demonstration that the phenotypes 
have a common aetiology. Further investigating what 
gives rise to this shared aetiology can also offer new 

avenues for interventions if we can identify underly-
ing common causal pathways (illustrated by P in Box 3,  
figure part b). Genetic correlation estimates are limited in  
that regard as they do not identify where in the genome 
shared loci reside nor do they elucidate mechanisms 
underlying cross-​phenotype relationships59. Phenome-​
wide association studies (PheWAS) or multi-​trait GWAS 
approaches can help in identifying shared loci82–84, that 
is, genetic variants influencing two or more pheno-
types. For example, a nonsynonymous variant in the 
zinc transporter SLC39A8 associates with schizophre-
nia, Parkinson disease and height85. Identifying such 
shared loci can be achieved via colocalization methods. 
Two phenotypes colocalize in a genetic region when it 
contains variants that associate with both phenotypes. 
This reflects three possible scenarios: first is causality, 
in which the SNP effect on one phenotype is mediated 
by its effect on the second phenotype; second is plei-
otropy, in which the same SNP independently affects 
both phenotypes; and third is linkage disequilibrium 
(LD), in which two or more SNPs in LD affect different 
phenotypes86 (Box 3). Colocalization tests and related 
methods can provide evidence in favour of the first two 
scenarios over the third scenario, thereby indicating 
that at least one causal variant in the genetic region 
influences the two traits, pointing towards a common 
causal pathway, which may constitute a target for 
intervention85–89.

The mechanisms underlying cross-​phenotype rela-
tionships can be further elucidated by attempting to 
distinguish between the first and second scenarios. One 
approach is to test for asymmetry between two pheno-
types, asymmetry being defined as the situation where 
the SNPs most strongly associated with one phenotype 
predict the other phenotype, but the reverse is not true85. 
For example, the top SNPs for LDL-​C predict CHD, but 
those for CHD do not predict LDL-​C. Such asymmetry is 
interpreted as more consistent with causal relationships 
between the two phenotypes (the first scenario) rather 
than the cross-​phenotype association being generated 
by shared pathways (the second scenario). A study of 42 
phenotypes identified 5 pairs of putative causally related 
phenotypes, including evidence for higher BMI leading 
to type 2 diabetes but not the reverse85. Notably, this 
asymmetry analysis would be underpowered to detect 
cases of true reciprocal causal relationships of similar 
magnitude. Furthermore, spurious asymmetry patterns 
can arise in principle through particular algebraic rela-
tionships between SNP effects, causal effects and effects 
of unmeasured confounders.

Such methods can also be applied to probe rela-
tionships between phenotypes and biomarkers, such 
as gene expression. Transcriptome-​wide association 
studies (TWAS) using measured gene expression are 
susceptible to the same biases as observational studies. 
Conversely, using summary statistics from expression 
quantitative trait locus (eQTL) studies and GWAS ena-
bles the detection of genetic variants that affect both 
expression levels and end point phenotypes (the sec-
ond scenario). Such analyses can help to identify func-
tionally relevant genes, for example, by pinpointing 
TNF receptor associated factor 1 (TRAF1) rather than 

Polygenic scores
Individual-​level scores that 
summarize genetic risk (or 
protection) for a given 
phenotype. For each single 
nucleotide polymorphism 
(SNP), a score is computed by 
counting effect alleles in an 
individual and weighting them 
by the effect size of this SNP. A 
polygenic score is computed 
by summing scores from a 
large number, potentially all, of 
the SNPs in the genome.

Dynastic effects
Occur when genetic variants in 
parents are transmitted to the 
offspring but also contribute to 
parental phenotype and in turn 
to the environment 
experienced by the child. This 
induces a correlation between 
offspring genotypes and the 
offspring’s environment.

Summary association 
statistics
Effect sizes and standard errors 
derived from a genome-​wide 
association study for each 
single nucleotide 
polymorphism (SNP). They 
may include other summary 
statistics (for example, allele 
frequency or imputation 
accuracy).

Genetic correlations
The correlation between causal 
effect sizes for two phenotypes 
across single nucleotide 
polymorphisms (SNPs). 
Typically reported as the 
correlation across the whole 
genome and will differ when 
restricted to pleiotropic SNPs 
only.

Phenome-​wide association 
studies
(PheWAS). These studies 
estimate the association of one 
or a few genetic variants of 
particular interest against 
many phenotypes, that is, a 
selection of all possible 
phenotypes or phenome.

Colocalization methods
When a genetic region contains 
variants associated with more 
than one phenotype, 
colocalization methods aim to 
determine whether this is due 
to shared or distinct causal 
variants.

Linkage disequilibrium
(LD). Nonrandom associations 
between alleles at different 
loci.
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complement C5 (C5) as the most functionally relevant 
gene in the TRAF1–C5 locus for rheumatoid arthri-
tis86. Furthermore, when several eQTLs are detected, 
asymmetry analysis can be implemented to estimate 
the causal effect of gene expression on end point phe-
notypes59. The same remarks apply to epigenome-​wide 
association studies (EWAS) to assess the aetiological 
role of DNA methylation levels.

To summarize, genetically informed phenome-​wide 
approaches can help in better understanding the shared 
aetiology between phenotypes, prioritizing putative 
causal relationships and refining functional knowledge.

Dissecting exposures and delineating pathways. 
Causal questions typically lead to testing whether one 
exposure causes one outcome. However, exposures 
are often heterogeneous, conflating distinct subcom-
ponents. Such heterogeneous exposures can lead to 
heterogeneity in causal estimates even in the absence 
of pleiotropy. BMI is an example of a heterogeneous 
exposure that could be refined into appetite, adipo-
genesis and cardiopulmonary fitness subcomponents. 
When available, genetic instruments indexing these 
different subcomponents may provide more specific 
causal effects and intervention targets90. Furthermore, 
a complex network of pathways often relates multiple 
exposures to multiple outcomes. Mapping out pathways 
from exposures to outcomes may provide additional 
targets for intervention, for example, by determining 
the mediating role of inflammation markers or hor-
mones. As a result, instead of examining a single arrow 
from one exposure to one outcome, causal analyses may 
start to resemble causal maps unravelling networks of 
relationships between phenotypes91, as illustrated in 
Fig. 2b. Figure 2b also illustrates the concept of a net-
work of causal relationships; for example, smoking is 
protective for type 2 diabetes via its effect of lower-
ing BMI92,93. To establish such causal maps, different 
methods outlined in this Review can be implemented, 
such as network MR that exploits a different genetic 
instrument to probe each arrow in the network94 or 
longitudinal twin designs with relevant phenotypes 
and biomarkers.
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Fig. 2 | causal mapping. Phenotypes of interest for various 
fields were selected to illustrate the possibilities and the 
pitfalls of a phenome-​wide causal map. Estimates  
(see below) were computed based on association summary 
statistics for each phenotype. Only significant estimates at 
P < 0.001 are shown. a | Genetic correlations were 
estimated between all phenotypes using linkage 
disequilibrium (LD) score regression16 implemented in  
LD Hub. b | Mendelian randomization (MR) was used to 
estimate causal effects in both directions for all phenotypes 
using an inverse variance weighted estimator, implemented 
in MR-​base. The map shows causal relationships in 
expected directions, such as low-​density lipoprotein (LDL) 
cholesterol to coronary heart disease and not the reverse, 
or from body mass index to type 2 diabetes. However, some 
relationships are also not plausible, such as years of 
education determining childhood IQ. Overall, therefore, 
genetic correlations indicate shared genetic aetiology 
between phenotypes, which can be dissected in MR 
analyses to better assess whether they arise from 
pleiotropic effects and/or from causal effects in either or 
both directions. Phenome-​wide analyses help in prioritizing 
plausible causal relationships and should be considered as 
an invitation to further probe the causal nature of detected 
relationships; however, they do not provide a definitive 
answer, as illustrated by the output of some implausible 
causal relationships. Upstream filtering based on a priori 
knowledge (for example, temporality precludes a causal 
relationship from years of education to childhood IQ) or 
evidence from other designs can further increase causal 
evidence. Additional details of the data sources and 
analysis methods to generate this figure are provided in 
Supplementary information.
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Conclusions and future perspectives
In this Review, we have described the common logic 
underlying the use of genetically informed methods 
to strengthen causal inference based on the counter-
factual approach. We have shown that such genetically 
informed methods already form a worthy toolbox for 
causal inference. Researchers can select appropriate 
tools depending on the characteristics of their research 
question and data: if exposure varies within families, 
twin and sibling designs can be considered; if we can 
find monogenic or polygenic instruments to adequately 

proxy the exposure, MR and extensions are available; 
if reverse causation is suspected, the DoC models and 
bidirectional MR can be explored; if prior knowledge 
exists regarding possible pleiotropic pathways, multi-
variable MR is recommended; to investigate the inter-
generational transmission of risk, adoption, IVF and 
intergenerational MR can be applied; and if the aim is 
to identify causal pathways shared between multiple 
phenotypes, colocalization methods are appropriate. 
These methods can be further integrated to develop 
this toolbox and offer new avenues for research. 

Box 4 | sensitivity analyses using genome-​wide data

we outline here possible 
avenues to further utilize 
genome-​wide data for causal 
inference. unlike Mendelian 
randomization (Mr), the 
approach suggested here does 
not follow instrumental 
variable principles. instead,  
it builds on a classical 
multivariable framework in 
epidemiology, with the 
additional advantage of 
directly modelling genetic 
confounding (see part c versus 
part b of the figure in Box 2).  
a drawback of classic 
multivariable approaches (for 
example, multivariable 
regression) is their inability to 
control for unobserved 
confounding. Here, we 
propose a sensitivity analysis 
to assess the extent to which 
estimates might result from unobserved confounding, in particular genetic confounding. such a method could represent 
an alternative when no appropriate genetic instrument is available, which may frequently happen for complex phenotypes 
of interest to social scientists (for example, income).

sensitivity analyses constitute common epidemiological tools to probe the robustness of findings. One such sensitivity 
analysis aims to assess to what extent the estimate of the effect of an exposure X on an outcome Y (βxy) would change if 
additional confounders were observed. in other words, how large should unobserved confounding be for the observed 
association to become null? a similar approach, schematically represented in the figure, can be adopted using polygenic 
scores and heritability estimates to test the likelihood that the association partly or fully results from genetic confounding.

two cases corresponding to two outcomes are represented, one outcome being more strongly influenced by X as shown by 
the standardized bivariate estimates of βxy on the y-​axis: 0.25 (red) and 0.15 (blue). the first step is to compute polygenic 
scores corresponding to each outcome using increasing P value thresholds, which leads to more single nucleotide 
polymorphisms (sNPs) being used to generate the polygenic scores128. this first step results in several polygenic scores 
predicting increasing levels of variance in each outcome (represented on the x-​axis in the figure with 5% and 9% of the 
variance explained in the two outcomes by the resulting polygenic scores). we then regress Y on X to estimate βxy while 
controlling for the polygenic score explaining 5% of the variance and then repeat the operation with the polygenic score 
explaining 9% of the variance. this should lead to a progressive decrease in βxy, proportional to the amount of genetic 
confounding, as represented in the polygenic scores section of the figure. However, this would still capture only a small 
fraction of genetic confounding because even genome-​wide polygenic scores may not capture all genetic influences on Y. 
available heritability estimates for Y, based on both sNP and twin data, provide useful benchmarks for the sensitivity analysis. 
we can estimate βxy in an ideal scenario where available polygenic scores capture the entire heritability of the outcome, 
thereby estimating the full impact of genetic confounding on βxy. as shown in the figure, these scenarios can be based on 
available estimates of sNP heritability (that is, heritability explained collectively by common sNPs) or twin heritability.  
Lines in the figure therefore represent the decrease in βxy as a function of the variance explained in Y by genetic factors.  
the following estimates of βxy are represented: bivariate estimate; estimates when controlling for observed polygenic scores 
(here, two); estimate under the sNP heritability scenario (here, 30% of variance explained); and estimate under the twin 
heritability scenario (here, 60% of variance explained). two possibilities are represented: βxy is still significant even under the 
twin heritability scenario (red), and βxy is already nonsignificant under the sNP heritability scenario (blue). the sensitivity 
analysis therefore allows us to assess how likely it is that a given effect is entirely genetically confounded. it can be expanded 
in at least two ways: by including polygenic scores for X and Y and by integrating known environmental confounders.
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In particular, emerging approaches embedding poly-
genic instruments within family-​based designs can 
address certain limitations of both approaches. In 
addition, integrating MR, colocalization methods and 
phenome-​wide approaches can allow researchers to 
identify putative causal relationships and shared causal 
pathways that are relevant to many phenotypes. In the 
future, methodological advances are likely to enrich 
this toolbox, and applications across disciplines should 
expand accordingly.

Methodological advances. We expect a continued 
burgeoning of method developments for genetically 
informed causal inference designs. Progress in the near 
future should lead to yet more robust MR estimators. 
Methods to refine genetic instruments by leveraging  
functional knowledge should yield more insightful 
inferences (for example, dissecting the effects of hetero
geneous exposures). We have outlined how integrating 
genetic instruments with family-​based designs can 
mitigate problems of MR, such as dynastic effects. 
This is reminiscent of family-​based genetic association 
tests developed to control for population stratification. 
Adapting those approaches to the MR paradigm could 
prove fruitful, for example, by conditioning on parental 
genotypes or by treating family effects as random95,96. 
Another promising area is the use of genome-​wide 
information. As shown in Box 2, figure part c, fully 
capturing genetic factors confounding an associa-
tion would enable better causal inference. However, 
although polygenic scores are increasingly powerful, 
they currently explain only a small amount of the var-
iability in phenotypes97. We propose that, similar to 
multivariable adjustment in non-​genetic epidemiology 
and other disciplines, polygenic scores can still be used 
in a sensitivity analysis to assess the likelihood that a 
relationship of interest results entirely from genetic 
confounding (Box 4).

Rapid expansion of applications across disciplines. 
New, more powerful GWAS, multi-​trait GWAS, 
PheWAS, TWAS and EWAS will considerably increase 
the scope of applications and the reliability of the meth-
ods described in this Review. Inexpensive microar-
rays also enable genotyping on specific samples such 
as twins (for example, TwinsUK98 and Twins Early 
Development Study (TEDS)99) or birth cohort studies 
(for example, the Norwegian Mother and Child Cohort 
Study (MoBa)100 and the Avon Longitudinal Study of 

Parents and Children (ALSPAC)101); data from such 
samples can be combined, encouraging a wider applica-
tion of the aforementioned methods combining family-​
based designs with genome-​wide data. Applications of 
genetically informed methods for causal inference in 
medicine already provide evidence of palpable ben-
efits, with pharmaceutical companies implementing 
methods that validate (or invalidate) existing drug tar-
gets (for example, discarding CRP or HDL-​C for CHD 
prevention), identify possible off-​target effects, repur-
pose existing drugs and discover new targets13,102,103. 
Disciplines that traditionally have largely ignored 
the role of genetics, such as social sciences and eco-
nomics104, can no longer justify doing so. Genetically 
informed causal inference methods should become 
routine wherever possible, at the very least to consider 
the possibility of genetic confounding.

Pitfalls of causal inference. Conclusions drawn from 
causal inference methods are only as good as the mod-
elling decisions made and to the extent that assumptions 
are credible105. Assessing credibility requires in-​depth 
knowledge of the question, which is unlikely in mas-
sive hypothesis-​free causal inference exercises, such as 
phenome-​wide approaches13. The causal map in Fig. 2b 
shows examples of implausible cases resulting from 
hypothesis-​free approaches. Furthermore, each method 
makes a different set of assumptions, which cannot 
always be appropriately evaluated. Therefore, triangu-
lation — when conclusions from several study designs 
converge — will play an increasingly important role in 
strengthening evidence for causality98,106,107. Overall, one 
should not expect that a single existing or future method 
for causal inference in observational settings will pro-
vide a definitive answer to a causal question. Rather, 
such methods can substantially improve the strength 
of evidence on a continuum from mere association to 
established causality.

In summary, causal inference using genetically 
informed designs has a long history but has undergone 
rapid and exciting developments in recent years, with 
research already reaping valuable benefits. A rich and 
growing toolbox of genetically informed methods to 
strengthen causal inference is becoming available, with 
applications across the biomedical and behavioural 
sciences and in new areas, including social sciences and 
behavioural economics.
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